2023春小荷讨论班(已完结)

组织者: 丁剑 杜航(北京大学)

时间: 每周五晚 18:40 - 21:00

地点: 北京大学理科一号楼 1304

简介:本讨论班围绕现代概率论相关话题展开,由同学自主选取感兴趣主题的讲义或论文在讨论班上作报告。基于之前的知识积累,所选主题可以涉及概率论中较为深入的领域。我们鼓励同学们就相同的兴趣点自行组队,几个人共同准备两到三次课的内容。


论文报告安排:


  • 2月24日,汪元正,BM & SRW cover times for two-dimensional torus,[1]。

  • 3月3日,杜航,Statistical physics and random optimization problems,[2]。

  • 3月10日,陈冠伊,Overlap-gap property as an evidence for computational hardness,[3]。

  • 3月17日,杜航,Recent progress on graph alignment of independent random graphs,[4]。

  • 3月31日,施彦锴,Extremal values of Gaussian processes, [5] Chapter 6。

  • 4月7日,王家民,Empirical processes and combinatorics, [5] Chapter 7。

  • 4月14日,刘浩宇,Introduction to isoperimetric problem, [6],[7]。

  • 4月21日,费雨缪,Approximate counting for spin systems, [8]。

  • 4月28日,汪元正,Random walks on simplicial complexes and spectral independence, [9],[10]。

  • 5月12日,黄凤麟,Cutoff of Glauber dynamics for the Ising model on the lattice, [11]。

  • 5月19日,李章颂,Recent progress on matching recovery of correlated random graphs, [12]。

  • 5月26日,周书涵,Large deviation principles and Wentzell-Freidlin theory, [13]。

  • 6月2日,汪元正,Large deviation for random interlacements, [14], ]15], [16]。

  • 6月9日,李章颂,Large deviation for dense Erdős-Rényi random graphs, [17]。

  • 6月16日,刘向益,Large deviation for random matrices, [18]。


  • [1] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Cover times for Brownian motion and random walks in two dimensions. (PDF)

  • [2] D. Panchenko, Introduction to the SK model. (PDF)

  • [3] D. Gamarnik, The Overlap Gap Property: a Geometric Barrier to Optimizing over Random Structures. (PDF)

  • [4] J. Ding, H. Du and S. Gong, A PTAS for the maximal overlap of two independent Erdős-Rényi graphs. (PDF)

  • [5] V. Handel, Probability in high dimensions. (PDF)

  • [6] M. Ledoux, The concentration of measure phenomenon. (PDF)

  • [7] M. Leboux, Isoperimetry and Gaussian Analysis. (PDF)

  • [8] D. Weitz, Counting independent sets up to the tree threshold. (PDF)

  • [9] N. Anari, K. Liu, S. O. Gharan and C. Vinzant, Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid. (PDF)

  • [10] N. Anari, K. Liu and S. O. Gharan, Spectral Independence in High-Dimensional Expanders and Applications to the Hardcore Model. (PDF)

  • [11] E. Lubetzky and A. Sly, Cutoff for the Ising model on the lattice. (PDF)

  • [12] J. Ding and Z. Li, A polynomial time iterative algorithm for matching Gaussian matrices with non-vanishing correlation. (PDF)

  • [13] B. Gentz, Large deviations and Wentzell-Freidlin theory (slides), (PDF)

  • [14] X. Li and A. S. Sznitman, A lower bound for disconnection by random interlacements. (PDF)

  • [15] A. S. Sznitman, Disconection, random walks, and random interlacemants. (PDF)

  • [16] X. Li, A lower bound for disconnection by simple random walk. (PDF)

  • [17] S. Chatterjee and S. R. S. Varadhan, The large deviation principle for the Erdős-Rényi random graph. (PDF)

  • [18] S. Chatterjee and S. R. S. Varadhan, Large deviations for random matrices. (PDF)