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1.Motivation

• Graph alignment problem is an important combinatorial opti-
mization problem which has applications in various fields.

• The problem is NP-hard in the worst case, and even finding near
optimal solution is computationally intractable in general.

• There are extensive studies for the problem (properties of optimal
solutions, efficient algorithms...) on graphs of specific types, e.g.,
sparse graphs, correlated random graphs...

• In our works [DDG22] and [DGH23], we consider the maximal
overlap of two independent Erdős-Rényi graphs.

3.Informational results

• It is clear that EO(π) =
(
n
2

)
p2 for any π.

•There is a phase transition at pc :=
√
logn/n: when p ≪ pc,

ΓOPT ≫
(
n
2

)
p2, and when p ≫ pc, ΓOPT ∼

(
n
2

)
p2, w.h.p.

•Out first theorem characterize the asymptotics of ΓOPT in the sparse
regime, and the second order asymptotics in the dense regime.

Theorem (Informational results). let pc =
√

log n/n.
(Sparse regime) For log n/n ≪ p ≪ pc, Sn,p :=

n log n

log
(
log n

np2

),

ΓOPT

Sn,p

in probability−→ 1.

(Dense regime) For pc ≪ p ≪ 1, Dn,p :=
√

n3p2 log n,

ΓOPT −
(
n
2

)
p2

Dn,p

in probability−→ 1.

Basic proof strategy:
•Upper bound: the first moment method.
•Lower bound for dense regime: the second moment method +

concentration inequality.
•Lower bound for sparse regime: a constructive proof via analyzing
a greedy type algorithm.

5.Hardness result for online algorithms

•We justify that Γ̃ALG =
√

8/9 · Γ̃OPT by proving a hardness result
for online algorithms.

•Online algorithms: assume thatG1 is coonstructed vertex by vertex
online, while G2 is off-line saved. An online matching algorithm
requires to match a vertex of G1 immediately at its construction.

•The iterative greedy matching algorithms is an online algorithm.
Theorem (Hardness for online algorithms). For any ε > 0, there
exists c > 0 such that for any online matching algorithm, its output
π∗ satisfies that

P
[
O(π∗) ≥

(
n

2

)
p2 + (

√
8/9 + ε)Dn,p

]
≤ exp(−cn log n) .

•The proof employs the branching-OGP framework (where OGP
stands for the overlap gap property) introduced in [HS21].

2.Mathematical settings

• Erdős-Rényi graph: a random graph with each edge in Kn pre-
served independently with probability p.

• Let P = Pn,p be the law of a pair of independent Erdős-Rényi
graphs (G1,G2) with n vertices and edge density p.

• Question: Find a bijection between the vertex sets such that the
size of overlap is as large as possible.

• Formally, for a bijection π : V1 → V2,
O(π) =

∑
u ̸=v

1(u,v)∈E1
1(π(u),π(v))∈E2

.

Our focus is twofold:
• The asymptotics of ΓOPT = maxπO(π) under P.
• The best performance of efficient algorithms ΓALG under P.

4. Algorithmic results

•The greedy iterative matching algorithm: successively for each
i ∈ V (G1), set π(i) to be an unmatched j ∈ V (G2) that maximizes∑

k≺i

1(k,i)∈E(G1)1(π(k),j)∈E(G2) .

•This simple algorithm turns out to reach the heart of the computa-
tional aspect to this random optimization problem.

• In the sparse regime, variants of the iterative greedy matching
algorithm suggests ΓALG = ΓOPT.

Theorem (PTAS in sparse regime). For log n/n ≪ p ≪ pc, for any
fixed ε > 0, there exists a polynomial-time algorithm which takes G1

and G2 as input and outputs a bijection π∗ such that,
P [O(π∗) > (1− ε)Sn,p] = 1− o(1).

• In the dense regime, let Γ̃OPT = ΓOPT−
(
n
2

)
p2, Γ̃ALG = ΓALG−

(
n
2

)
p2.

•The above algorithm gives Γ̃ALG ≥
√

8/9 · Γ̃OPT.
Theorem. For pc ≪ p ≪ 1/ (log n)3, the output of the iterative
greedy matching algorithm π∗ satisfies that

P
[
O(π∗) ≥

(
n

2

)
p2 + (

√
8/9− o(1))Dn,p

]
= 1− o(1).
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