Graph alignment problem for two independent Erdős-Rényi graphs: informational and computational thresholds

Hang Du (MIT), Jian Ding (PKU), Shuyang Gong (PKU), Rundong Huang (PKU)

1. Motivation

- Graph alignment problem is an important combinatorial optimization problem which has applications in various fields.
- The problem is NP-hard in the worst case, and even finding near optimal solution is computationally intractable in general.
- There are extensive studies for the problem (properties of optimal solutions, efficient algorithms...) on graphs of specific types, e.g., sparse graphs, correlated random graphs...
- In our works [DDG22] and [DGH23], we consider the maximal overlap of two independent Erdős-Rényi graphs.

3.Informational results

- It is clear that $\mathbb{E} O(\pi) = \binom{n}{2} p^2$ for any π .
- There is a phase transition at $\mathbf{p_c} := \sqrt{\log \mathbf{n}/\mathbf{n}}$: when $p \ll p_c$, $\Gamma_{\mathrm{OPT}} \gg \binom{n}{2} p^2$, and when $p \gg p_c$, $\Gamma_{\mathrm{OPT}} \sim \binom{n}{2} p^2$, w.h.p.
- Out first theorem characterize the asymptotics of Γ_{OPT} in the sparse regime, and the second order asymptotics in the dense regime.

Theorem (Informational results). *let* $p_c = \sqrt{\log n/n}$. (Sparse regime) For $\log n/n \ll p \ll p_c$, $S_{n,p} := \frac{n \log n}{\log \left(\frac{\log n}{n r^2}\right)}$,

$$\frac{\Gamma_{\mathrm{OPT}}}{S_{n,n}} \stackrel{in \ probability}{\longrightarrow} 1.$$

(Dense regime) For $p_c \ll p \ll 1, D_{n,p} := \sqrt{n^3 p^2 \log n}$,

$$\frac{\Gamma_{\text{OPT}} - \binom{n}{2} p^2}{D_{n,p}} \xrightarrow{\text{in probability}} 1$$

Basic proof strategy:

- Upper bound: the first moment method.
- Lower bound for dense regime: the second moment method + concentration inequality.
- Lower bound for sparse regime: a constructive proof via analyzing a greedy type algorithm.

5. Hardness result for online algorithms

- We justify that $\widetilde{\Gamma}_{ALG} = \sqrt{8/9} \cdot \widetilde{\Gamma}_{OPT}$ by proving a hardness result for online algorithms.
- Online algorithms: assume that G_1 is coonstructed vertex by vertex online, while G_2 is off-line saved. An online matching algorithm requires to match a vertex of G_1 immediately at its construction.
- The iterative greedy matching algorithms is an online algorithm.

Theorem (Hardness for online algorithms). For any $\varepsilon > 0$, there exists c > 0 such that for any online matching algorithm, its output π^* satisfies that

$$\mathbb{P}\left[O(\pi^*) \ge \binom{n}{2} p^2 + (\sqrt{8/9} + \varepsilon)D_{n,p}\right] \le \exp(-cn\log n).$$

• The proof employs the branching-OGP framework (where OGP stands for the overlap gap property) introduced in [HS21].

2. Mathematical settings

- Erdős-Rényi graph: a random graph with each edge in K_n preserved independently with probability p.
- Let $\mathbb{P} = \mathbb{P}_{n,p}$ be the law of a pair of independent Erdős-Rényi graphs $(\mathsf{G}_1,\mathsf{G}_2)$ with n vertices and edge density p.
- Question: Find a bijection between the vertex sets such that the size of overlap is as large as possible.
- Formally, for a bijection $\pi: V_1 \to V_2$,

$$O(\pi) = \sum_{u \neq v} \mathbf{1}_{(u,v) \in E_1} \mathbf{1}_{(\pi(u),\pi(v)) \in E_2}.$$

Our focus is twofold:

- The asymptotics of $\Gamma_{\mathrm{OPT}} = \max_{\pi} \mathrm{O}(\pi)$ under \mathbb{P} .
- The best performance of efficient algorithms Γ_{ALG} under \mathbb{P} .

4. Algorithmic results

• The greedy iterative matching algorithm: successively for each $i \in V(G_1)$, set $\pi(i)$ to be an unmatched $j \in V(G_2)$ that maximizes

$$\sum_{k \prec i} \mathbf{1}_{(k,i) \in E(G_1)} \mathbf{1}_{(\pi(k),j) \in E(G_2)}.$$

- This simple algorithm turns out to reach the heart of the computational aspect to this random optimization problem.
- In the sparse regime, variants of the iterative greedy matching algorithm suggests $\Gamma_{ALG}=\Gamma_{OPT}.$

Theorem (PTAS in sparse regime). For $\log n/n \ll p \ll p_c$, for any fixed $\varepsilon > 0$, there exists a polynomial-time algorithm which takes G_1 and G_2 as input and outputs a bijection π^* such that,

$$\mathbb{P}\left[\mathcal{O}(\pi^*) > (1 - \varepsilon)S_{n,p}\right] = 1 - o(1).$$

- In the dense regime, let $\widetilde{\Gamma}_{\mathrm{OPT}} = \Gamma_{\mathrm{OPT}} \binom{n}{2} p^2$, $\widetilde{\Gamma}_{\mathrm{ALG}} = \Gamma_{\mathrm{ALG}} \binom{n}{2} p^2$.
- The above algorithm gives $\widetilde{\Gamma}_{ALG} \geq \sqrt{8/9} \cdot \widetilde{\Gamma}_{OPT}$.

Theorem. For $p_c \ll p \ll 1/(\log n)^3$, the output of the iterative greedy matching algorithm π^* satisfies that

$$\mathbb{P}\left[O(\pi^*) \ge \binom{n}{2} p^2 + (\sqrt{8/9} - o(1))D_{n,p}\right] = 1 - o(1).$$

References

[DDG22] J. Ding, H. Du and S. Gong, "A polynomial-time approximation scheme for the maximal overlap of two independent Erdős-Rényi graphs", *Random Structures & Algorithms* (2024), pp. 1-38.

[DGH23] H. Du, S. Gong and R. Huang, "The algorithmic phase transition of random graph alignment problem", preprint, arXiv:2307.06590.

[HS21] B. Huang and M. Sellke, "Tight Lipschitz Hardness for optimizing Mean Field Spin Glasses", 2022 *IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)*, Denver, CO, USA, 2022, pp. 312-322.