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1.Motivations and mathematical settings

• The correlated Erdős-Rényi graph model is an extensively
studied model that is motivated by various applied fields: network
de-anonymization, protein-protein interaction, computer vision...
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proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

•Given n ∈ N and p, s ∈ (0, 1), define a pair of latently correlated
Erdős-Rényi graphs (G1, G2) on [n] as follows:
(i) Sample G0 ∼ G(, n, p);
(ii) Independently subsample G1, G

∗
2 from G0 by keeping each edge

with probability s, independent of each other.
(iii) Relabel G∗

2 by a uniform random permutation π∗ to get G2.

•Main goal: recover the matching π∗ as good as possible based on
the sole observation of (G1, G2).

2.Previous work

•There are three types of matching recovery studied in the literature:
(i) Exact recovery: recover the entire π∗;
(ii) Almost exact recovery: recover a 1− o(1) fraction of π∗;
(iii) Partial recovery: recover a positive fraction of π∗.

•Previous work mostly focus on determining the thresholds for
the above types of recovery, and the transitions have been well-
understood [WXY22, DD23].

• In the dense regime p = n−o(1), there is a sharp phase transition in
s that impossibility of partial recovery suddenly transits to achiev-
ablity of almost exact recovery (the All-or-Nothing phenomenon).

• In the sparse regime p = n−α+o(1) where 0 < α ≤ 1 is a fixed
constant, There is a non-trivial regime nps2 = Θ(1) that partial
recovery is achievable while almost exact recovery is impossible.

———————————————————————————-
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3.Our focus

•We focus on the regime that only a fraction of π∗ can be recovered
and study the optimal recovery fraction of π∗.

• Specifically, we assume p = n−α+o(1) for a constant 0 < α ≤ 1, and
s satisfies nps2 = Θ(1),

4. Intuitions and preliminaries

• Intuitively, the part of π∗ that can be recovered is the “dense part”
in the intersection graph Hπ∗ of G1, G2 through π∗.

•To formulate the above intuition in a more quantitative and rigorous
way, we need the following concepts.

•Balanced load. For a finite graph G = (V,E), let E⃗ be the
directed edge set. A balanced allocation is a function θ : E⃗ → [0, 1]

satisfying the following two properties:
(i) θ(x → y) + θ(y → x) = 1,∀(x, y) ∈ G.
(ii) Let ∂θ(x) =

∑
(x,y)∈E θ(y → x), then for any (x, y) ∈ E,

∂θ(x) < ∂θ(y) ⇒ θ(x → y) = 0 .

• Fact [Haj90]. For any finite graphG, ballanced allocations exist and
the induced funtion ∂θ is unique. We call the function ∂θ : V → R
the balanced load function.

•Fact. For any finite graph G = (V,E) and any t > 0, define
ft(H) = t|E(H)| − |H| , H ⊂ V ,

where E(H) is the induced edge set of G in H . Then,
argmax ft(H) = {v ∈ V : ∂θ(v) ≥ t−1} .

5.Main results

•Consider the intersection graph Hπ∗ = (V , E) ∼ G(n, ps2).
•Fix any ε > 0. For a vertex v ∈ V , we call it heavy if ∂θ(v) ≥
α−1 + ε, and we call it light if ∂θ(v) ≤ α−1 − ε.

Theorem. For any ε > 0, 0 < α < 1 and λ > 1, assume p = n−α+o(1)

and nps2 = λ, the following holds:
(i) There exists π̃ = π̃(G1, G2) s.t. with high probability,

#{v is a heavy vertex, π̃(v) ̸= π∗(v)} ≤ εn .

(ii) There is no π̂ = π̂(G1, G2) s.t. with non-vanishing probability,
#{v is a light vertex, π̂(v) = π∗(v)} ≤ εn .

• Fact [AS16]. The empirical measure of the balanced load function
of H ∼ G(n, λ/n) converges weakly to a limiting measure µλ.

• Combining with the above fact, sending ε ↓ 0 in the theorem yields
the following corollary.

Corollary. Under the same assumptions, the optimal recovery
fraction is lies in between µλ((α

−1,∞)) and µλ([α
−1,∞]).

In particular, when µλ({α−1}) = 0 (which happens for all but
countably many α), the optimal recovery fraction is µλ((α

−1,∞)).
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