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Abstract

In this note, we consider the maximal overlap among vertex bijections between two independent
d-dimensional random geometric graphs, each with n vertices and an average degree of nθ, where
θ ∈ (0, 1). It is known that the maximal overlap, compared to the size of a single graph, undergoes
a phase transition from 1 − o(1) to o(1) as d increases. we provide upper and lower bounds for
the transition threshold that are tight up to log log n factors. Additionally, we conjecture that the
transition occurs at d ≍ log n/ log log n.

1 Introduction
The random geometric graph is a probabilistic model for graphs with inherent geometric characteristics.
We fix two integers, n and d, to represent the size and dimension of the graph, respectively. Let ρ
denote the uniform measure on the d-dimensional sphere Sd. The random geometric graph is defined
as follows.

Definition 1.1 (Random geometric graph with connecting threshold τ). Let u1, . . . , un
i.i.d.∼ ρ. We

construct a graph G on the set [n] by forming edges between pairs (i, j) if and only if ui · uj ≥ τ . The
law of G is denoted by G(n, d, τ).

In this note, we will fix a constant θ ∈ (0, 1) and define τ∗ = τ(n, d, θ) such that a graph G ∼
G(n, d, τ∗) has an average degree of nθ. Additionally, we will use G as shorthand for G(n, d, τ∗). We
make the following heuristic observations:

• When d is relatively small compared to n, G ∼ G essentially acts as a discretization of Sd (see, for
example, [5] for the case where d = O(1)). Therefore, in the low-dimensional regime, G exhibits
strong geometric rigidity, and there is essentially “no randomness” in G.

• When d is large enough relative to n, it can be shown that G ∼ G becomes indistinguishable from
an Erdős–Rényi graph on n vertices with an average degree of nθ (refer to [2] for the case when
d ≫ n3, and see also [1, 6] for some subsequent improvements). Thus, in sharp contrast to the
low-dimensional regime, G is “purely random”, devoid of any observable geometric properties.

These observations suggest that there must be a certain geometry-randomness phase transition in the
random geometric graph as the dimension increases. This phenomenon has been one of the central
topics in the study of high-dimensional random geometric graphs over the past decade. While signifi-
cant progress has been made in determining the regime where randomness predominates, as evidenced
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by [2, 1, 6], to the best of the author’s knowledge, there are few results on the threshold at which
geometric rigidity begins to diminish and randomness starts playing a substantial role. In this note,
we take a step towards answering this latter question by studying the maximal overlap of two instances
independently sampled from G. We begin with the following definition.

Definition 1.2. For two graphs G1, G2 on [n] and a permutation π ∈ Sn, define

O(G1, G2, π) :=
∑

1≤i<j≤n

G1
i,jG

2
π(i),π(j) (1.1)

(where (G1
i,j) and (G2

i,j) are the adjacency matrices for G1 and G2, respectively), and we further denote
that

Λ(G1, G2) :=
maxπ∈Sn O(G1, G2, π)

|E(G1)| ∧ |E(G2)|
. (1.2)

It is clear from the definition that Λ(G1, G2) ≤ 1. Additionally, if Λ(G1, G2) is close to 1 and the
cardinalities of E(G1) and E(G2) are approximately the same, then G1 and G2 appear very similar.
One way to assess the geometric rigidity of a random geometric graph sampled from G is to examine
the behavior of Λ(G1, G2) for two independent graphs G1, G2 ∼ G. In the low-dimensional case when
d = O(1), it can be inferred from [5, Lemma 2.1] that Λ(G1, G2) is typically 1 − o(1). Conversely,
in the high-dimensional case when G1, G2 are indistinguishable from a pair of independent Erdős–
Rényi graphs, a straightforward union bound implies that Λ(G1, G2) = o(1) with high probability (see
also [3, 4] for a detailed study of the Erdős–Rényi graph case). Heuristically, the threshold at which
randomness becomes more prominent more or less corresponds to the point where Λ(G1, G2) starts to
deviate from 1, prompting us to investigate the transition of Λ(G1, G2) as d increases.

In this note, we provide sufficient conditions on d in terms of n such that with high probability,
Λ(G1, G2) = 1 − o(1) or o(1). In particular, our results determine the transition threshold of the
dimension d for Λ(G1, G2) transitioning from 1− o(1) to o(1), accurate up to a log log n factor.

Theorem 1.3. Let d0 = logn
log log n . Then, for any constant θ ∈ (0, 1), it holds that for some constant

λ = λ(θ) > 0,
d ≤ λd0 ⇒ P[Λ(G1, G2) = 1− o(1)] = 1− o(1) , (1.3)

and
d≫ log n⇒ P[Λ(G1, G2) = o(1)] = 1− o(1) , (1.4)

where the probability P is taken over (G1, G2) ∼ G⊗2.

We expect our lower bound (1.3) to be tight. More precisely, we formulate the following conjecture:

Conjecture 1.4. With the same notations, it holds that for some constant λ′ = λ′(θ) > 0,

d ≥ λ′d0 ⇒ P[Λ(G1, G2) = o(1)] = 1− o(1) . (1.5)

The note is organized as follows: in Section 2, we introduce several basic properties and estimates
for random geometric graphs. In Section 3 and Section 4, we prove the lower bound (1.3) and the
upper bound (1.4), respectively. We conclude this note with some further discussions on potential
approaches towards addressing the main conjecture.

2 Preliminaries on random geometric graphs
In this section, we present some basic properties of random geometric graphs, which will be useful in
later proofs. We begin with a handy estimation on the dot-product of vectors uniformly chosen on Sd.
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Proposition 2.1. For any fixed u ∈ Sd and v ∼ ρ, the dot product u · v has a probability density

ψ(x) =
Γ
(
d+1
2

)
Γ
(
d
2

)√
π
(1− x2)

d−2
2

∆
= Cd(1− x2)

d−2
2 , x ∈ [−1, 1] . (2.1)

Furthermore, for any 0 ≤ r ≤ 2, it holds that

Cd

2ed

(
r2 − r4

4

) d
2

≤ P[d(u, v) ≤ r] ≤ Cd

2
r2
(
r2 − r4

2

) d−2
2

. (2.2)

Proof. (2.1) follows from standard calculations (see, e.g., [1, Lemma 5.1]), and given this, we have
(note that d(u, v) ≤ r ⇐⇒ u · v ≥ 1− r2

2 ),

P[d(u, v) ≤ r] =

∫ 1

1− r2

2

Cd(1− x2)
d−2
2 dx ≤ Cdr

2

2

(
1−

(
1− r2

2

)2
) d−2

2

=
Cdr

2

2

(
r2 − r4

4

) d−2
2

,

which gives the upper bound in (2.2). On the other hand, let r′ = r2− r4

4

d , then

P[d(u, v) ≤ r] ≥
∫ 1− r2

2 +r′

1− r2

2

Cd(1− x2)
d−2
2 dx ≥

Cd

(
r2 − r4

4

)
2d

(
1− 1

d

) d−2
2
(
r2 − r4

4

) d−2
2

,

which is bounded below by Cd

2ed (r
2 − r4

4 )
d
2 . This verifies (2.2) and completes the proof.

The next lemma considers the degree of a vertex in the random geometric graph.

Lemma 2.2. For any τ ∈ [−1, 1] and v ∈ [n], let G ∼ G(n, d, τ). Then the degree dv of v in G follows
the binomial distribution B(n, p), where p = P[d(u, v) ≤

√
2− 2τ ]. Furthermore, for any K > 0, it

holds that
P[|dv − np| ≥ K] ≤ 2 exp

(
− K2

2(np+K)

)
. (2.3)

Proof. The first claim follows from the fact that the vectors u1, . . . , un which generate G are indepen-
dent. Meanwhile, (2.3) is a standard estimate on the tail probability of binomial variables.

3 The lower bound
In this section, we assume that d ≤ θd0

10 and prove P[Λ(G1, G2) = 1− o(1)] = 1− o(1). Note that this
proves (1.3) by taking λ = θ

10 . We begin with a lemma that relates the connecting radius to the size
of the neighborhood in the random geometric graph.

Lemma 3.1. For any constant θ′ ∈ (0, 1), let rθ′ be such that Pu,v∼ρ⊗2 [d(u, v) ≤ rθ′ ] = n−1+θ′ . Then
it holds that rθ′ = n

−1+θ′+o(1)
d .

Proof. By the definition of rθ′ and the estimations given in Proposition 2.1 (together with the fact
that Cd/2 = no(1) and Cd/2ed = no(1) when d≪ d0), we have

n
−2+2θ′+o(1)

d ≤ r2θ′ −
r4θ′

4
≤ r2θ′ ≤ n−

2−2θ′+o(1)
d ,

which implies rθ′ = n
−1+θ′+o(1)

d , as desired.
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The core of the proof of (1.3) lies in the following proposition, which is largely inspired by [5].

Proposition 3.2. For d ≤ θd0

10 , let u1, . . . , un, v1, . . . , vn
i.i.d.∼ ρ. Then, with high probability, there

exists a permutation π ∈ Sn such that for all but o(n) many i ∈ [n], it holds that

d(ui, vπ(i)) ≤ n−
−1+θ/3+o(1)

d . (3.1)

With Proposition 3.2 in hand, we may now proceed to finish the proof of (1.3) as follows.

Proof of the lower bound (1.3). Recall the definition of rθ′ , where θ′ ∈ (0, 1), as in Lemma 3.1. Let
u1, . . . , un

i.i.d.∼ ρ, and let G1 be the random geometric graph generated by forming edges between pairs
(i, j) which satisfy d(ui, uj) ≤ rθ. We note that G1 ∼ G by the definition of τ∗ and G = G(n, d, τ∗).
Moreover, let G′

1 be the graph on [n] constructed by forming edges between the pairs (i, j) such that
d(ui, uj) ≤ rθ − rθ/2. It is clear that G′

1 is a subgraph of G1. In addition, denoting p∗ = P[d(u, v) ≤
rθ] = n−1+θ and p∗∗ = P[d(u, v) ≤ rθ − rθ/2] (where u, v ∼ ρ⊗2) as the edge densities of G1 and G′

1,
respectively. We then note that

p∗ − p∗∗ = P[rθ − rθ/2 < d(u, v) ≤ rθ]

(2.1)
=

∫ 1−(rθ−rθ/2)
2/2

1−r2θ/2

C(1− x2)
d−2
2 dx ≤ Cdrθrθ/2(r

2
θ − r4θ/4)

d−2
2

(2.2)
≤ 2ed ·

rθ/2

rθ
· P[d(u, v) ≤ rθ]

Lemma 3.1
≤ dn− θ/2+o(1)

d p∗ ,

which is o(p∗) since dn−θ/2d ≪ 1 by our assumption that d ≤ θd0

10 . This suggests that p∗∗ = (1−o(1))p.
Therefore, both G1 and G′

1 have average degrees of (1 + o(1))np∗.
Now let v1, . . . , vn

i.i.d.∼ ρ, and let G2 ∼ G be generated from v1, . . . , vn. Define S1 as the event that
u1, . . . , un, v1, . . . , vn satisfies the condition in Proposition 3.2, and define S2 as the event that each
vertex in G1, G

′
1 and G2 has degree (1 + o(1))np∗. From Proposition 3.2 and Lemma 2.2, together

with a union bound, P[S1 ∩ S2] = 1− o(1).
On the event S1 ∩ S2, let π ∈ Sn and I ⊂ [n] be the witnesses of S1, i.e., |I| = n − o(n) and

d(ui, vπ(i)) ≤ n
−1+θ/3+o(1)

d for i ∈ I. Note that for i, j ∈ I and (i, j) ∈ E(G′
1), it holds that (recall that

rθ′ = n
−1+θ′+o(1)

d for θ′ ∈ (0, 1) by Lemma 3.1)

d(vπ(i), vπ(j)) ≤ d(ui, vπ(i)) + d(ui, uj) + d(uj , vπ(j)) ≤ rθ − rθ/2 + 2n
−1+θ/3+o(1)

d ≤ rθ,

and thus (π(i), π(j)) ∈ E(G2). This implies that O(G1, G2, π) is at least the number of edges in the
induced subgraph of G′

1 on I. Under the event S2, the induced subgraph has at least

|E(G′
1)| − (1 + o(1))np∗|[n] \ I| ≥ (1/2− o(1))n1+θ = (1 + o(1))|E(G1)|,

which implies that
Λ(G1, G2) ≥

|O(G1, G2, π)|
|E(G1)|

≥ 1− o(1),

and thus P[Λ(G1, G2) ≥ 1− o(1)] ≥ P[S1 ∩ S2] = 1− o(1), as desired.

Now we turn to the proof of Proposition 3.2. For a set of subsets A1, . . . , AN ⊂ [n], we say
(a1, . . . , aN ) is a system of distinct representatives (SDR) for (A1, . . . , AN ) if ai ∈ Ai for any 1 ≤ i ≤ N
and a1, . . . , aN are distinct. Recall Hall’s theorem regarding the existence of an SDR: a collection
(A1, . . . , AN ) has an SDR if and only if for any 1 ≤ k ≤ N and any 1 ≤ i1 < · · · < ik ≤ N , it holds
that |Ai1 ∪ · · · ∪ Aik | ≥ k.
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Proof of Proposition 3.2. Let u1, . . . , un, v1, . . . , vn
i.i.d.∼ ρ and N = ⌊n − n/ log n⌋ = (1 − o(1))n. For

each 1 ≤ i ≤ N , we define
Ai = {j ∈ [n] : d(ui, vj) ≤ rθ/3},

and for each 1 ≤ j ≤ n, we define Nj = |{i ∈ [N ] : j ∈ Ai}|. It is clear that for each 1 ≤ i ≤ N ,
|Ai| ∼ B(n, n−1+θ/3) and for each 1 ≤ j ≤ n, Nj ∼ B(N,n−1+θ/3). Then it follows from Lemma 2.2,
together with a union bound, that with high probability,

|Ai| ≥ nθ/3 − nθ/6 log n, ∀1 ≤ i ≤ N,

and similarly (note that Nj ∼ B(N, p))

Nj ≤ Nn−1+θ/3 + nθ/6 log n ≤ nθ/3 − nθ/3

log n
+ nθ/6 log n, ∀1 ≤ j ≤ n.

Therefore, it holds with high probability that

min
1≤i≤N

|Ai| ≥ max
1≤j≤n

Nj . (3.2)

Now we verify Hall’s condition under (3.2): for any 1 ≤ k ≤ N and any 1 ≤ i1 < · · · < ik ≤ N , let
B = Ai1 ∪ · · · ∪ Aik . We have that

k min
1≤i≤N

|Ai| ≤ |{(i, j) : i ∈ {i1, . . . , ik}, j ∈ [n], d(ui, vj) ≤ rθ/3}| ≤ B max
1≤j≤n

Nj ,

and thus |B| ≥ k by (3.2). This verifies the Hall’s condition and hence (A1, . . . , Ad) has a SDR
(j1, . . . , jN ). Let π ∈ Sn satisfies π(i) = ji, 1 ≤ i ≤ N , then by our definition of Ai we see d(ui, vπ(i)) ≤
rθ/3 for any 1 ≤ i ≤ N = (1− o(1))n. Combined with Lemma 3.1, this completes the proof.

4 The upper bound
This section is devoted to proving the upper bound (1.4). We fix some d ≫ log n along with an
arbitrary constant δ ∈ (0, 1). It suffices to show that

P[Λ(G1, G2) ≥ 2δ] ≤ o(1) . (4.1)

Given that this is true, we can obtain the desired result by letting δ → 0.

4.1 Random sparsification
The starting point is to attempt to show that for each fixed π ∈ Sn, P[O(G1, G2, π) ≥ δn1+θ] =
o(1/n!). Once this is established, the desired result follows by applying a union bound over all π ∈ Sn.
Unfortunately, the distribution of O(G1, G2, π) is far from clear, and even after some simplification,
it remains difficult to analyze. This complexity is largely due to the denseness of G1 and G2, which
results in complicated correlations within O(G1, G2, π). However, it turns out that sparse random
geometric graphs (where the average degree is O(1)) are much more tractable. For instance, many
tools for the sparse regime have been developed in [6], and this note draws significant inspiration from
this seminal work. In light of this, our first step is to perform a random “sparsification” of G1.

Definition 4.1. Fix a constant M such that M > 100(1 − θ)/δ2. Define s = Mn−θ. Consider
G1 ∼ G. We sample a random subgraph H = H(G1, s) from G1 by retaining each edge of G1 in H with
probability s, independently. Observe that H possesses an average degree of M = O(1), as determined
by our choice of M .
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After sparsifying G1 to H, we claim that (4.1) simplifies to

P[Λ(H,G1) ≥ 2δ + o(1)] = o(1) , (4.2)

where Λ(H,G2) =
maxπ∈Sn O(H,G2,π)

|E(H)|∧|E(G2)| , as defined in Definition 1.2. This is because, with high probabil-
ity, |E(G1)| ∧ |E(G2)| = (1 + o(1))n1+θ/2 and |E(H)| ∧ |E(G2)| = (1 + o(1))Mn/2, leading to

P[Λ(G1, G2) ≥ 2δ] ≤ P[max
π∈Sn

O(G1, G2, π) ≥ (1 + o(1))n1+θ/2/2] + o(1) ,

and
P[Λ(H,G2) ≥ 2δ + o(1)] ≥ P[max

π∈Sn

O(H,G2, π) ≥ (1 + o(1))Mn/2]− o(1) .

Additionally, for any (G1, G2) such that maxπ∈Sn
O(G1, G2, π) = O(G1, G2, π

∗) ≥ (1 + o(1))n1+θ/2,
we find that

max
π∈Sn

O(H,G2, π) ≥ O(H,G2, π
∗) ∼ B(O(G1, G2, π

∗), s) ,

which exceeds (1 + o(1))sn1+θ/2 = (1 + o(1))Mn/2 with high probability. Therefore,

P[Λ(G1, G2) ≥ 2δ] ≤ P[max
π∈Sn

O(G1, G2, π) ≥ (1 + o(1))n1+θ/2] + o(1)

≤ (1 + o(1))P[max
π∈Sn

O(H,G2, π) ≥ (1 + o(1))Mn/2] + o(1)

≤ (1 + o(1))P[Λ(H,G2) ≥ 2δ + o(1)] + o(1) ,

thus verifying the claim.

4.2 Truncations
Now, we proceed to the proof of (4.2). For this purpose, it is necessary to introduce some appropriate
truncations on both H and G2. We begin by specifying the desired properties for H.

Definition 4.2. We define a vertex v ∈ [n] as good in H if the following conditions are met:

• The 3-neighborhood of v forms a tree structure;

• For any vertex u within the 3-neighborhood of v, the degree of u in H does not exceed 2M .

A vertex that does not satisfy these conditions is considered bad. Additionally, we denote by H the
event that |E(H)| = (1 + o(1))Mn/2, and the sum of degrees of bad vertices is at most δMn/3.

Lemma 4.3. For H = H(s,G1) as in Definition 4.1, the event H occurs with probability 1− o(1).

The lemma follows from standard facts about sparse random graphs, and we omit the details here.
Next, we consider a slight modification to the random geometric graph model G.

Definition 4.4. Let µ = ρ⊗n. For vectors (u1, . . . , un) ∼ µ, define U as the event that |ui · uj | ≤ γ
for any 1 ≤ i ̸= j ≤ n, with γ := (log n/d)1/4. Furthermore, denote by G′ the distribution of a graph
constructed by forming edges between pairs (i, j) whenever ui · uj ≥ τ∗, where (u1, . . . , un) is sampled
from µ[· | U ].

We remark that such a truncation will facilitate our analysis of joint probabilities of the form
Pv∼ρ[v · ui1 ≥ τ∗, . . . , v · uiK ≥ τ∗] (see Lemma 4.9 for more details). The following lemma shows the
close similarity between G and its modified version G′.
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Lemma 4.5. µ[U ] = 1− n−ω(1) and the total variation distance TV(G,G′) = 1− n−ω(1).

Proof. From (2.1), for any distinct i and j, we have

µ[|ui · uj | ≥ γ] ≤ 2Cd

(
1−

√
log n

d

) d−2
2

≤ exp
(
−Ω

(√
d log n

))
,

which is n−ω(1) as d≫ log n. By applying a union bound, we deduce that µ[Uc] ≤ n2 ·n−ω(1) = n−ω(1).
This confirms that µ[U ] = 1 − n−ω(1). Consequently, by the data processing inequality, the total
variation distance TV(G,G′) ≤ TV(µ, µ[· | U ]) = n−ω(1), as required.

It is straightforward to see that

P[Λ(H,G2) ≤ 2δ + o(1)] ≤ P[H /∈ H] + P[H ∈ H,Λ(H,G′) ≤ 2δ + o(1)] + TV(G,G′) ,

where in the second term G′ is sampled from G′. In light of Lemma 4.3 and Lemma 4.5, (4.2) is reduced
to proving that for any H ∈ H, we have P[Λ(H,G) ≤ 2δ + o(1)] ≤ δ + o(1). Here, the probability
is taken over the random graph G ∼ G′. Furthermore, since |E(H)| = (1 + o(1))Mn/2 under H, it
remains to show that for any H ∈ H,

PG∼G′ [max
π∈Sn

O(H,G, π) ≤ (1 + o(1))δMn] ≤ δ + o(1) . (4.3)

4.3 Domination by binomial variable
In this discussion, we consider a fixed graph H ∈ H and aim to prove (4.3). Consider any permutation
π ∈ Sn and an index k such that 1 ≤ k ≤ n. Let Fπ

k−1 represent the σ-field generated by the set of
random variables {Gπ(i),π(j) : (i, j) ∈ E(H), i < j < k}. The overlap O(H,G, π) can be written as

O(H,G, π) =
∑

(i,j)∈E(H)

Gπ(i),π(j) =

n∑
k=1

Ok(π), (4.4)

where Ok(π) is defined as Ok(π) =
∑

j<k,(j,k)∈E(H)Gπ(j),π(k). It is evident that for 1 ≤ j < k, Oj is
measurable with respect to Fπ

k−1. The crucial component for managing Λ(H,G) = maxπ∈Sn
O(H,G, π)

involves a stochastic domination relation, as stated in the following proposition:

Proposition 4.6. For any permutation π ∈ Sn, any good vertex k in H, and any realization of Fπ
k−1,

the conditioned random variable Ok given Fπ
k−1, is stochastically dominated by δM

3 + 2MIk, where
Ik ∼ B(1, n−10/δ) denotes a Bernoulli indicator that is independent of Fπ

k−1.

Proof of (4.3) assuming Proposition 4.6. For each fixed π ∈ Sn, it is clear that∑
k is bad in H

Ok(π) ≤
∑

k is bad in H

dH(k) ≤ δMn

3

by the condition H ∈ H. In addition, we conclude from Proposition 4.6 that∑
k is good in H

Ok(π)

is stochastically dominated by δMn
3 +2MX, where X ∼ B(n, n−10/δ) is a binomial variable. From the

Chernoff bound for binomial variables, we get that

P[O(H,G, π) ≥ (1 + o(1))δMn] ≤ P[X ≥ δn/8] ≤ exp

(
−δn

8
·
(
log
( δn/8

n1−δ/10

)
− 1
))

,
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which is upper-bounded by exp(−n log n) ≪ 1/n!. The desired result then follows by taking a union
bound over π ∈ Sn.

The remainder of this section is dedicated to proving Proposition 4.6. Without loss of generality,
we assume π = id. For simplicity, we denote Ok for Ok(id) and Fk−1 for F id

k−1, where 1 ≤ k ≤ n. We
consider a fixed k ∈ [n] which is a good vertex in H, and a specific realization of Fk−1. Define the sets

C = {(i, j) ∈ E(H) : i < j < k,Gi,j = 1} , D = {(i, j) ∈ E(H) : i < j < k,Gi,j = 0} .

Suppose G is generated from the vectors u1, . . . , un ∈ Sd. The conditional joint distribution of
u1, . . . , un, given Fk−1 is then given by

µk := µ[· | ui · uj ≥ τ∗, ∀(i, j) ∈ C, ui · uj < τ∗, ∀(i, j) ∈ D,U ] , (4.5)

where U is as defined in Definition 4.4. Denote Hk as the induced subgraph of H on the vertex set [k],
and let i1, . . . , iD be the neighbors of k in Hk. The distribution of Ok given Fk−1 corresponds to the
distribution of the sum

D∑
t=1

1(uit · uk ≥ τ∗)

under µk. While µk is a measure conditioned on an event with a sparse correlation structure, analyzing
the joint probability on all coordinates (u1, . . . , un) remains difficult. To tackle this, we fix the positions
of ui for vertices i distant from k in H, restricting the correlation to a local neighborhood of k.

Let T denote the 3-neighborhood of k in Hk, which is a tree rooted at k with a maximum degree
not exceeding 2M under the assumption that k is good in H. For each 1 ≤ t ≤ D, define Tt as the
subtree of T rooted at it, and let N(Tt) be the set of non-leaf vertices in Tt. Additionally, set

Ct = {(i, j) ∈ E(Tt) : Gi,j = 1} , Dt = {(i, j) ∈ E(Tt) : Gi,j = 0} ,

and consider a realization of (ui)i/∈N(Tt) to be compatible with Fk−1 if it does not violate the condition-
ing in (4.5). The joint law on (ui)i∈N(Tt) of µk, conditioned on a compatible realization (ui)i/∈N(Tt), is
then given by

µ̃t := µ̃ [· | ui · uj ≥ τ∗, ∀(i, j) ∈ Ct, ui · uj < τ∗, ∀(i, j) ∈ Dt, |ui · uj | ≤ γ, ∀i ∈ N(Tt), j ∈ [n]] , (4.6)

where µ̃ is the product measure of uniform distributions on (ui)i∈N(Tt).
For a probability measure ν on Sd with probability density ν(x) with respect to ρ, we define

F (ν) = sup
x∈Sd

Py∼ν [x · y ≥ τ∗] = sup
x∈Sd

∫
y·x≥τ∗

ν(y) dρ(y) . (4.7)

We claim that it suffices to show the following control on F (ν̃t) for ν̃t be the marginal of uit under µ̃t.
Proposition 4.7. For any realization of Fk−1, any 1 ≤ t ≤ D, and any compatible specification of
(ui)i/∈N(Tt), let µ̃t be defined as in (4.6) and let ν̃t be the marginal of uit under µ̃t, then F (ν̃t) ≤ no(1)p.

Proof of Proposition 4.6 assuming Proposition 4.7. For any distinct t1, . . . , tk ∈ {i1, . . . , iD}, we apply
the total probability formula to obtain

µk[utj · uk ≥ τ∗ | utl · uk ≥ τ∗, l < j] = E(ui)i/∈N(Ttj
)
ν̃tj [utj · uk ≥ τ∗] ≤ E(ui)i/∈N(Ttj

)
F (ν̃tj ),

where the expectation over (ui)i/∈N(Ttj
) is taken under the conditional measure µk[· | utl ·uk ≥ τ∗, l < j].

This implies that the realizations of (ui)i/∈N(Ttj
) are almost surely compatible. By Proposition 4.7, we

have F (ν̃t) ≤ no(1)p = n−1+θ+o(1) almost surely, and therefore

µk[utj · uk ≥ τ∗ | utl · uk ≥ τ∗, l < j] ≤ n−1+θ+o(1).
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Utilizing the multiplicative rule, we conclude that

µk[utj · uk ≥ τ∗, 1 ≤ j ≤ k] ≤ (n−1+θ+o(1))k.

A union bound then yields

µ̃k[Ok ≥ δM/3] ≤
(

2M

δM/3

)
(n−1+θ+o(1))δM/3 ≤ n−10/δ,

where the second inequality is valid since M is selected to be a constant greater than 100(1 − θ)/δ2.
Moreover, it trivially holds that Ok ≤ 2M , leading to the conclusion that Ok ≤ δM/3 + 2MIk for
some Ik ∼ B(1, n−10/δ).

4.4 Compute the marginal via belief propagation
We now turn our attention to Proposition 4.7. We begin by fixing a realization of Fk−1 and a t ∈
{1, . . . , D}, along with a compatible realization (ui)i/∈N(Tt). For simplicity, let us define

At = {ui·uj ≥ τ∗, ∀(i, j) ∈ Ct}, Bt = {ui·uj < τ∗, ∀(i, j) ∈ Dt}, Ut = {ui·uj ≥ −γ, ∀i ∈ N(Tt), j ∈ [n]}.

Heuristically, the primary influence from the conditioning arises from At, as Bt and Ut are typical
events under µ̃. This intuition will be formalized in Lemma 4.10. We now focus on the measure
µ̂t[·] = µ̃[· | At], which constitutes the main part of our analysis. Let ν̂t be its marginal on uit , and
our goal is to establish an appropriate control on F (ν̂t).

Consider Ft ⊂ Tt, the subgraph generated by edges (i, j) ∈ Ct. It is clear that Ft is a forest,
and we denote by T ′

t ⊂ Ft the component containing it. Crucially, µ̂t can be viewed as the uniform
measure on the solution space of a constraint satisfaction problem (CSP) on (Sd)N(Tt), defined by the
constraints ui · uj ≥ τ∗, ∀(i, j) ∈ E(Ft). The factor graph of this CSP is Ft, allowing µ̂t to decompose
into products of marginals over the components of Ft. Consequently, ν̂t is simply the marginal of the
uniform measure over the solution space of the CSP defined by ui · uj ≥ τ∗, ∀(i, j) ∈ E(T ′

t ). Moreover,
as T ′

t is a tree, ν̂t can be explicitly computed using the belief propagation algorithm. Given that T ′
t

has a maximum depth of 2, we can derive the explicit expression for belief propagation readily.
For clarity, we redefine our notations as follows: let the root of T ′

t be denoted as ∅, with ∅ having
children 1, . . . , D. Each child i has its own children (i, 1), . . . , (i,Di) for 1 ≤ i ≤ D. Under this context,
the vectors ui,j ∈ Sd, 1 ≤ i ≤ D, 1 ≤ j ≤ Di are fixed, ensuring that |ui,j · ui′,j′ | ≤ γ for all distinct
pairs (i, j) and (i′, j′), while u∅, ui, 1 ≤ i ≤ D are flexible. Under these new notations, our goal can be
restated as follows.

Proposition 4.8. Given that

µ̂[·] = µ̃[· | u∅ · ui ≥ τ∗, ui · u(i,j) ≥ τ∗, 1 ≤ i ≤ D, 1 ≤ j ≤ Di]

where µ̃ is the product measure of uniform distributions of u∅, ui, 1 ≤ i ≤ D, then the probability
density ν̂∅(x) of the marginal of u∅ under µ̂ satisfies that F (ν̂t) ≤ no(1)p.

We now run belief propagation algorithm on T ′
t to compute ν̂t as follows:

Step 1 For 1 ≤ i ≤ D and 1 ≤ j ≤ Di, define ν(i,j)→i(x) = p−11(x · ui,j ≥ τ∗), ∀x ∈ Sd.

Step 2 For 1 ≤ i ≤ D, let ν̂i(x) ∝
∏Di

j=1 ν(i,j)→i(x), ∀x ∈ Sd, such that ν̃i is a probability density on Sd.

Step 3 For 1 ≤ i ≤ D, let νi→∅(x) = p−1Py∼ν̂i
[x · y ≥ τ∗], ∀x ∈ Sd.
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Step 4 Let ν̂∅(x) ∝
∏D

i=1 νi→∅(x), ∀x ∈ Sd, such that ν is a probability density on Sd.

Then it follows that the output of Step 4 is just the probability density of the marginal distribution
of u∅, see [6, Section 7] for more details.

We now look more carefully into each step of the belief propagation. Step 1 is straightforward.
Plugging the expression in Step 1 into Step 2, we see that for each 1 ≤ i ≤ D,

ν̂i(x) ∝ 1(x · ui,j ≥ τ∗, ∀1 ≤ j ≤ Di) ,

and so
ν̂i(x) =

1(x · ui,j ≥ τ∗, ∀1 ≤ j ≤ Di)

Pu∼ρ[u · ui,j ≥ τ∗, 1 ≤ j ≤ Di]
.

Therefore, in Step 3 we have that for each 1 ≤ i ≤ D,

νi→∅(x) = Py∼ν̂i
[x · y ≥ τ∗] =

Pu∼ρ[x · u ≥ τ∗, u · ui,j ≥ τ∗, ∀1 ≤ j ≤ Di]

p · Pu∼ρ[u · ui,j ≥ τ∗, ∀1 ≤ j ≤ Di]
. (4.8)

And finally, we have

ν̂∅(x) =

∏D
i=1 νi→∅(x)∫

Sd
∏D

i=1 νi→∅(y) dρ(y)
. (4.9)

We have the following simple but useful estimate.

Lemma 4.9. For any K = O(1) and v1, . . . , vk ∈ Sd with |vi · vj | ≤ o(1), ∀1 ≤ i ̸= j ≤ K, it holds that

Pu∼ρ[u · vj ≥ τ∗, ∀1 ≤ j ≤ K] = no(1)pK .

Proof. By rotation symmetry and the condition, we may assume that
v1
v2
...
vK

 =


1 0 0 · · · 0 · · · 0
o(1) 1− o(1) 0 · · · 0 · · · 0

...
...

... · · ·
... · · · 0

o(1) o(1) o(1) · · · 1− o(1) · · · 0


First, recall γ = (log n/d)1/4 = o(1), from a simple union bound it holds that

Pu∼ρ[u · uj ≥ τ∗, ∀1 ≤ j ≤ K] = Pu∼ρ[τ∗ ≤ u · vj ≤ γ, ∀1 ≤ j ≤ K] + n−ω(1) .

Now let u = (u1, . . . , ud+1) ∼ ρ, we note that conditioned on the first m coordinates, (um+1, . . . , ud+1)
is just uniformly chosen from the (d−m)-dimensional sphere with radius (1−u21− · · ·−u2m)1/2. With
the observation in mind, it can be easily deduced from 2.1 that for each 0 ≤ m ≤ K − 1, we have

Pu∼ρ[τ∗ ≤ u · vm+1 ≤ γ | τ∗ ≤ u · vi ≤ γ, i ≤ m] = no(1)p ,

and hence the result follows from the multiplicative rule.

Now we can easily prove Proposition 4.8.

Proof of Proposition 4.8. From our choice of ui,j , 1 ≤ i ≤ D, 1 ≤ j ≤ Di, we have that |ui,j · ui,j′ | ≤
γ = o(1) for all i, j ̸= j′. Therefore, we have the denominator in (4.8) is no(1)pDi+1. In addition, we
define

B = {x ∈ Sd : |x · ui,j | ≤ γ, ∀1 ≤ i ≤ D, 1 ≤ j ≤ Di} ,
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then it is clear that ρ(B) = 1 − n−ω(1) by a union bound. Be lemma 4.9 we have for x ∈ B, the
numerator in (4.8) is also no(1)pDi+1. Hence for x ∈ B it holds νi→∅(x) = no(1). For x ∈ Sd \ B, it
trivially holds that νi→∅(x) ≤ p−1 ≤ n. Given this, it follows that

F (ν̂∅) = sup
x∈Sd

∫
y·x≥τ∗

ν̃∅(y) dρ(y) ≤ p · no(1) + n−ω(1) · n = pno(1) .

Finally, we relate µ̂t = µ̃[· | At] with µ̃t = µ̃[· | At,Bt,Ut], the probability measure we really care.

Lemma 4.10. It holds that µ̃[Bt,Ut | At] ≥ 1− o(1), and hence µ̃t[·] ≤ (1 + o(1))µ̂t[·].

Proof. We only sketch the proof of the first claim. It suffices to show that µ̃[Bc
t | At] and µ̃[Uc

t | At]
are both o(1).

For the former one, we show that for any (i, j) ∈ Dt, µ̃[ui · uj ≥ τ∗ | At]. If either of i, j equals
to it, then the result just follows from F (ν̂t) ≤ no(1)p as shown in Proposition 4.8. Otherwise, one of
ui, uj is fixed, say uj . It can be shown by analyzing a similar belief propagation that this reduces to
some probability of the form

P[ui · uj ≥ τ∗, ui · ujt ≥ τ∗, 1 ≤ t ≤ K]

P[ui · ujt ≥ τ∗, ∀1 ≤ t ≤ K]
,

which can be done via Lemma 4.9.
For the latter one, we note that µ̃[Uc

t | At] ≤ µ̃[Uc
t ]/µ̃[At], and µ̃[Uc

t ] ≤ n−ω(1) by a union bound.
It can be shown via Lemma 4.9 that µ̃[At] ≥ nO(1), and thus the result follows.

Now given with the first claim, we have

µ̃t[·] =
µ̃[·,At,Bt,Ut]

µ̃[At,Bt,Ut]
≤ µ̃[·,At]

µ̃[At]µ̃[Bt,Ut | At]
=

µ̃[· | At]

µ̃[Bt,Ut | At]
= (1 + o(1))µ̂[·] .

Proof of Proposition 4.7. It follows from the lemma that F (ν̃t) ≤ (1 + o(1))F (ν̂t), which is no(1)p as
shown in Proposition 4.8. This proves Proposition 4.7 and thus finishes the proof of (1.4).

5 Further discussions
5.1 The power of rotation is futile
In this section, we explore a potential strategy to enhance the lower bound established in Section 3.
This approach manage to leverage an underutilized aspect in our previous proofs: the power of rotations
on Sd. Specifically, we investigate whether the additional degrees of freedom provided by rotations in
O(d) (the orthogonal group in d dimensions, comprising isometries on Sd) can significantly improve
our lower bound. The mind map is once it can be shown that for typical graphs G1 and G2 generated
from vertices u1, . . . , un ∈ Sd and v1, . . . , vn ∈ Sd respectively, there exists a transformation T ∈ O(d)
such that for a majority of indices i ∈ [n], the distance d(Tui, vπ(i)) is less than a certain radius r,
thereby implying Λ(G1, G2) = 1− o(1).

However, this section proposes that the inclusion of rotational transformations does not necessarily
transcend the conjectured threshold d0. Suppose we have d0 ≪ d≪ log n. In line with the arguments
presented in the proof of (1.3) in Section 3, establishing Λ(G1, G2) = 1 − o(1) with high probabil-
ity requires demonstrating that, typically, for u1, . . . , un and v1, . . . , vn uniformly and independently
selected from Sd, there exists a transformation T ∈ O(d) and a permutation π ∈ Sn such that

d(Tui, vπ(i)) = o
(rθ
d

)
, for n− o(n) indices i ∈ [n]. (5.1)
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However, we will demonstrate that this condition typically does not hold, suggesting that our previous
approach cannot be extended to dimensions exceeding d0.

Let ε be such that P[d(u, v) ≤ ε] = n−2, then it follows that ε = n−(2+o(1))/d by similar arguments
as in Lemma 3.1, and so ε≫ rθ/d by our choice of d. Moreover, we take a minimal ε/2-net N of O(d)

with respect to the operator norm ∥·∥op, then from [8, Propsition 6] we have |N | ≤ (c0ε)
−d2/2 for some

universal constant c0 > 0. If there exists T ∈ O(d) and π ∈ Sn such that (5.1) holds, then there exists
T0 ∈ N , such that d(T0ui, vπ(i)) ≤ ε for at least half of i ∈ [n]. Denote BT0,i = {v ∈ Sd, d(T0ui, v) ≤ ε},
then the aforementioned event implies that BT0,i ∩ {v1, . . . , vn} ̸= ∅ for at least half of i ∈ [n]. It can
be shown by a union bound that with high probability for u1, . . . , un, d(ui, uj) > 2ε, ∀i ̸= j ∈ [n], and
so BT0,i, i = 1, . . . , n are pairwise disjoint. We fix any choice of u1, . . . , un satisfying this condition,
then for each fixed T0 ∈ N , the events {BT0,i ∩ {v1, . . . , vn} ̸= ∅} are negative-correlated with each
other, and so we have

P
[
∃T ∈ O(d), π ∈ Sn s.t. d(T0ui, vπ(i)) ≤ rθ/d for at least half of i ∈ [n]

]
≤

∑
T0∈N

P
[
BT0,i ∩ {v1, . . . , vn} ̸= ∅ for at least half of i ∈ [n]

]
≤ (c0ε)

−d2/2 ·
(
n

n/2

)
· (2n−2)n/2 = nO(log n)−Ω(n) = o(1) ,

where in the last inequality, we first employ a union bound on the half of i ∈ [n] satisfying BT0,i ∩
{v1, . . . , vn} ̸= ∅, then use the fact that these events are negative-correlated together with a simple
estimate P[BT0,i ∩ {v1, . . . , vn} ̸= ∅] ≤ 2n−2 followed by Poisson approximation. This proves that the
additional power of rotations does not essentially improve the previous lower bound.

5.2 Breaking the log n upper bound
In this final section, we explore potential enhancements to our proof for the upper bound, specifically
aiming to achieve a bound down to log n. A crucial element in our analysis in Section 4 is the
application of a belief propagation algorithm on a tree with depth 2, as detailed in Proposition 4.8.
The justification for limiting the depth to 2 stems from the observation that the connecting threshold
τ∗ = o(1) provided with the dimension d ≫ log n. In this case, a random walk on Sd with transition
kernel P (x, y) = p−1

∗ 1(x · y ≥ τ∗) exhibits nice mixing properties within just 2 or 3 steps, which partly
explain why restricting to a 3-neighborhood suffices for our purpose.

Conversely, for smaller values of d, where τ∗ = Ω(1) or even approaches 1, it becomes imperative to
consider trees of greater depth for analogous results to Proposition 4.8. Intuitively, the optimal depth
D∗ should be neither too small, such that given the positions of all descendants up to D∗-generations,
the posterior distribution of the root approximates the uniform distribution, nor too large, such that
the D∗-neighborhood of a sparse random graph is typically a tree. For the latter lower bound on D∗,
as a minimal requirement, it must at least match the mixing time of the corresponding random walk
on Sd. This aspect of the random walk mixing time is explored in [7], and it is reassuring to note
that the lower bound for D∗ remains below the threshold at which the local neighborhood in H begins
to exhibit loop-like structures, provided d ≥ d0. In this sense, it is promising that our proof scheme
can be extended to prove Conjecture 1.4. Nevertheless, handling a large D∗ introduces complexity in
explicitly writing out each step of the belief propagation algorithm, necessitating innovative approaches
for its analysis. We leave this to future works.
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