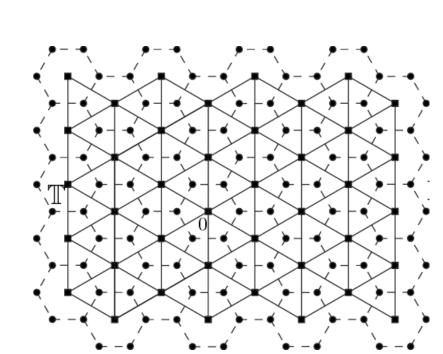
Sharp asymptotics of arm probabilities in critical planar percolation

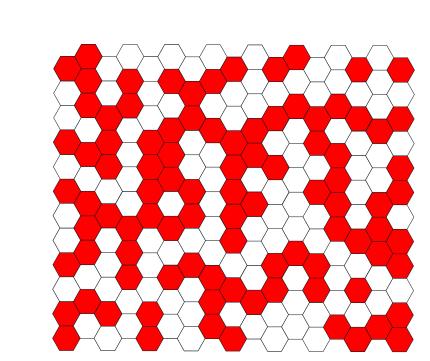
Hang Du[†], Yifan Gao*, Xinyi Li[†], Zijie Zhuang[§]

†Peking University, *City University of Hong Kong, §University of Pennsylvania

Mathematical Settings

- We consider the critical planar percolation on the triangular lattice \mathbb{T} : each site of \mathbb{T} is open independently with probability 1/2.
- For illustration, we paint hexagons in the dual lattice \mathbb{T}^* instead, and use two different colors to represent openness and closedness.





Arm Events

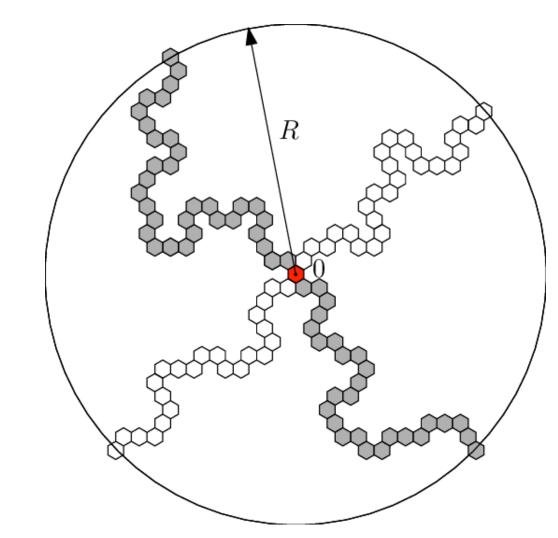
- An **arm** is a self-avoiding path of nearest-neighbor hexagons of the same color.
- C_R : circle of radius R centered at the origin; A(r,R): the annulus with boundaries C_r, C_R .

Definition (Arm events). The half-plane j-arm event $\mathcal{B}_j(r,R)$:

 $\{\exists j \text{ disjoint arms of alternating colors not leaving } \mathbb{H}, \text{ and each of them connects } C_r \text{ to } C_R\}.$

The whole-plane j-arm event $\mathcal{P}_{j}(r,R)$:

 $\{\exists j \text{ disjoint arms connecting } C_r \text{ to } C_R \text{ with alternating colors}\}.$



An example $\mathcal{P}_4(1,R)$, which also satisfies $\mathcal{B}_2(1,R)$.

Previous results

• The probabilities of Arm events are central objects of interest for the study percolation. The most classical results is the followings:

Theorem (Simirnov-Werner' 01).

Half-plane *exponent:* For any $j \ge 1$,

$$\mathbb{P}[\mathcal{B}_{j}(r,R)] = R^{-j(j+1)/6+o(1)}.$$

Whole-plane exponent: For any $j \ge 2$,

$$\mathbb{P}[\mathcal{P}_j(r,R)] = R^{-(j^2-1)/12 + o(1)}.$$

Theorem (Lawler-Schramm-Werner '01).

$$\mathbb{P}[\mathcal{P}_1(r,R)] = R^{-5/48 + o(1)}.$$

- All these results leave an o(1) factor in the exponent. Oded Schramm asked for up-to-constant estimates in ICM 2006.
- $\mathbb{P}[\mathcal{B}_2(1,R)] \asymp R^{-1}$, $\mathbb{P}[\mathcal{B}_3(1,R)] \asymp R^{-2}$ and $\mathbb{P}[\mathcal{P}_5(1,R)] \asymp R^{-2}$ can be derived from elementary arguments. However, improvements for other cases are much more difficult.

Technical Input

- A power-law rate for convergence of the exploration process to SLE_6 : consider a Jordan set Ω with $a, b \in \partial \Omega$.
- Let γ be the cordal SLE_6 in Ω from a to b.
- -For $\eta > 0$, with suitable discretization $(\Omega_{\eta}, a_{\eta}, b_{\eta})$ by $\eta \mathbb{T}^*$, let γ_{η} be the exploration process from a_{η} to b_{η} .
- -Given open $U \subset \Omega$, such that $a \notin \partial U$ and $b \in \partial U$, let T_{η} (resp. T) be the first time that γ_{η} (resp. γ) enters U_{η} (resp. U).

Theorem (Binder-Richards '21).

Under mild assumptions, $\exists u > 0$ s.t. $\forall \eta > 0$, there is a coupling \mathbf{P} of γ_{η} and γ such that

$$\mathbf{P}\left[d\left(\gamma_{\eta}|_{[0,T_n]},\gamma|_{[0,T]}\right) > \eta^u\right] < O(\eta^u),$$

where d is the up-to-reparametrization metric between two curves.

Our Main Results

• We are now able to give sharp asymptotics for arm probabilities.

In the half-plane case, for any $j \ge 1$, $r \ge r_0(j)$, $\exists C, c > 0$ s.t.

$$\mathbb{P}[\mathcal{B}_j(r,R)] = CR^{-j(j+1)/6} (1 + O(R^{-c})).$$

In the whole-plane case, for any $j \ge 2$, $r \ge r'_0(j)$, $\exists C' > 0$, s.t.

$$\mathbb{P}[\mathcal{P}_j(r,R)] = C'R^{-(j^2-1)/12} (1+o(1)).$$

In particular, one can take $r_0(1) = 1$ for j = 1, 2, 3 and $r'_0(1) = 1$ for j = 2, 3, 4, 5, 6.

One More Result

• We also obtain the following **super strong separation lemma** in the half-plane, which solves a conjecture in [Garban-Pete-Schramm'13]:

Theorem (D.-G.-L.-Z.'22+).

 $\forall j \geq 1, \exists K, c > 0$ such that whenever $R_0 \geq R > Kr$, conditioned on the event $\mathcal{B}_j(r, R_0)$ together with any realization of the color configuration outside C_R , the land-points on C_r of interfaces crossing A(r, R) are well separated with probability at least c.

References

- I. Binder and L. M. Richards, *Convergence Rates of Random Discrete Model Curves Approaching SLE Curves in the Scaling Limit*, PhD thesis, University of Toronto (Canada).
- H. Du, Y. Gao, X. Li and Z. Zhuang, Sharp Asymptotics for Arm Probabilities in Critical Planar Percolation, Preprint, Arxiv:2205.15901.
- C. Garban, G. Pete and O. Schramm, *Pivotal, Cluster and Interface Measures for Critical Planar Percolation*, J. Amer. Math. Soc..
- G. F. Lawler, O. Schramm and W. Werener, *One-arm Exponent for Critical 2D percolation*, Electron. J. Probab..
- S. Smirnov and W. Werner, *Critical Exponents for Two-dimensional Percolation*, Math. Res. Lett..