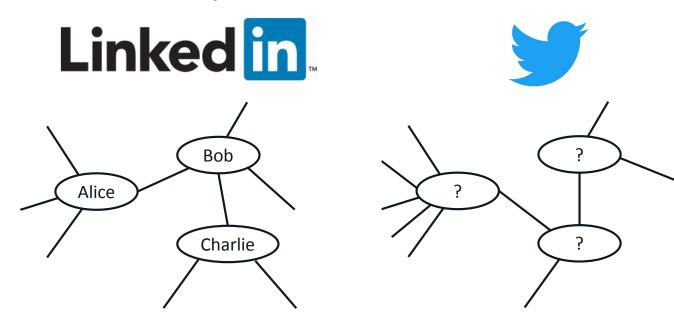
Detection and recovery thresholds for correlated random graphs

Jian Ding, Hang Du

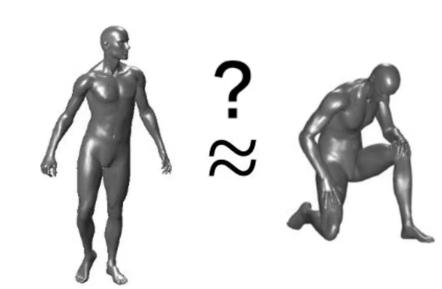
Peking University

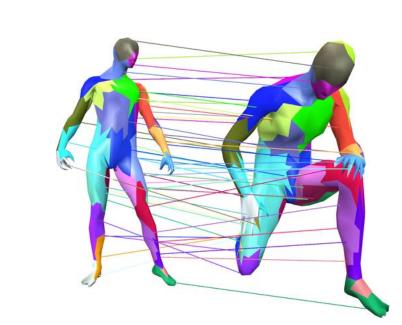
1. Motivations

- Consider a pair of graphs with **latent correlated structure**, it is desirable to detect/recover the hidden correlation solely based on their **topological structures**.
- Questions from a wide range of applied fields:
- Social network de-anonymization



Computer vision

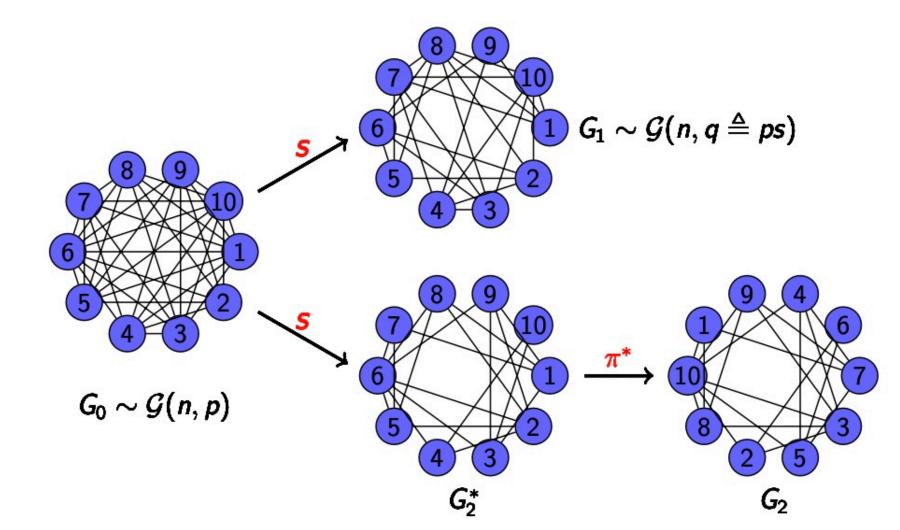




-Biology computing, natural language processing, · · ·

2. Mathematical Setting

- $\mathcal{G}(n,p)$: Erdős-Rényi graph on n vertices with edge density p (i.e., each edge is kept independently with probability p).
- Fix $n \in \mathbb{N}$, $p, s \in (0, 1)$, sample $(G_1, G_2) \sim \mathbb{P}$ as follow:
- -Sample a "parent" graph $G_0 \sim \mathcal{G}(n, p)$;
- -Independently sample $G_1, G_2^* \subset G_0$ with density s;
- -Relabel G_2^* by a unifrom permutaion π^* to get G_2 .



3. Basic Questions

- P: correlated law sampled as before;
- \mathbb{Q} : independent law of two $\mathbf{G}(n, ps)$ graphs.
- The fundamental problem for this model is twofold:
- **Detection**: given (G_1, G_2) , do hypothesis testing:

$$(G_1,G_2) \sim \mathbb{P} \text{ v.s. } (G_1,G_2) \sim \mathbb{Q}.$$

– Recovery: recover the hidden π^* for $(G_1, G_2) \sim \mathbb{P}$.

4. Previous Results

• A natural estimator (MLE):

$$\hat{\pi} = \operatorname{argmax} C(\pi),$$

where $C(\pi)$ is the total number of edges in the intersection graph of G_1 and G_2 thorugh π .

• In the **dense regime** $(p = n^{-o(1)})$, Wu, Xu and Yu showed that $\hat{\pi}$ is indeed optimal, and the transition threshold for s is given by

$$s_0 = \sqrt{\frac{2\log n}{np(\log\frac{1}{p} - 1 + p)}}$$

- More precisely, in this regime for any $\varepsilon > 0$,
- if $s > (1 + \varepsilon)s_0$, then for some explicit τ it holds

$$\mathbb{P}[C(\hat{\pi}) < \tau] + \mathbb{Q}[C(\hat{\pi}) > \tau] = o(1),$$

and for any $\delta < 1$ it holds

$$\mathbb{P}[O(\hat{\pi}, \pi^*) > \delta n] = 1 - o(1)$$
.

- If $s < (1 - \varepsilon)s_0$, then $\mathrm{TV}(\mathbb{P}, \mathbb{Q}) = o(1)$ (so detection is impossible), and for any estimator $\tilde{\pi}$ and $\delta > 0$,

$$\mathbb{P}[O(\tilde{\pi}, \pi^*) > \delta n] = o(1).$$

- In the sparse regime, Wu, Xu and Yu also used $\hat{\pi}$ to determine the transition thereshold up to a multiplicative constant.
- Furthermore, they determined the threshold for the possibility of **exact recovery** (when this can be done, it is also achieved by $\hat{\pi}$).

5. Our Results

- We establish sharp informational thresholds for **detection** and **partial recovery** in the **sparse regime**.
- Our novel estimator:

$$\check{\pi} = \operatorname{argmax} D(\pi),$$

where $D(\pi)$ stands for the **maximal edge-vertex ratio** over all subgraphs of the intersection graph of G_1 and G_2 through π .

• The main technical imput for us is the following:

Theorem (Anatharam-Salez'16).

There is a function $\varrho:[1,\infty)\to[1,\infty)$ such that $\forall c\geq 1$, for $G\sim \mathcal{G}(n.c/n)$, it holds that

$$\max_{\emptyset \neq H \subset G} \frac{|E(H)|}{|V(H)|} \to \varrho(c) \text{ in probability as } n \to \infty.$$

• We obtain the sharp thereshold in terms of ϱ :

Theorem (D.-D.'22).

Assume $p = n^{-\alpha+o(1)}$ for some constant $\alpha \in (0, 1)$, and let $\lambda_* = \varrho^{-1}(\alpha^{-1})$. Then for any $\varepsilon > 0$,

-If $nps^2 \ge \lambda_* + \varepsilon$, then for some τ it holds

$$\mathbb{P}[D(\check{\pi}) < \tau] + \mathbb{Q}[\check{\pi} > \tau] = o(1),$$

and these exists some $\delta > 0$ such that

$$\mathbb{P}[O(\check{\pi}, \pi^*) > \delta n] = 1 - o(1)$$
.

-If $nps^2 \le \lambda_* - \varepsilon$, then $TV(\mathbb{P}, \mathbb{Q}) = o(1)$, and for any estimator $\tilde{\pi}$ and $\delta > 0$,

$$\mathbb{P}[O(\tilde{\pi}, \pi^*) > \delta n] = o(1).$$

References

- J. Ding and H. Du, *Detection threshold for correlated Erdős-Rényi* graphs via densest subgraphs, IEEE Trans. Inf. Theory.
- J. Ding and H. Du, *Matching Recovery Threshold for Correlated Random Graphs*, Ann. Stat.

Y. Wu, J. Xu and S. H. Yu, *Testing Correlation of Unlabeled Random Graphs*, Ann. Appl. Probab.

Y. Wu, J. Xu, S. H. Yu, Setting the Sharp Reconstruction Thresholds for Random Graph Matching, IEEE Trans. Inf. Theory.