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1. Motivations

• Consider a pair of graphs with latent correlated structure, it is
desirable to detect/recover the hidden correlation solely based on
their topological structures.

• Questions from a wide range of applied fields:

– Social network de-anonymization
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– Computer vision

– Biology computing, natural language processing, · · ·

2. Mathematical Setting

•G(n, p): Erdős-Rényi graph on n vertices with edge density p (i.e.,
each edge is kept independently with probability p).

• Fix n ∈ N, p, s ∈ (0, 1), sample (G1, G2) ∼ P as follow:

– Sample a “parent” graph G0 ∼ G(n, p);
– Independently sample G1, G

∗
2 ⊂ G0 with density s;

– Relabel G∗
2 by a unifrom permutaion π∗ to get G2.

3. Basic Questions

•P: correlated law sampled as before;
Q: indepndent law of two G(n, ps) graphs.

• The fundamental problem for this model is twofold:

– Detection: given (G1, G2), do hypothesis testing:

(G1, G2) ∼ P v.s. (G1, G2) ∼ Q.

– Recovery: recover the hidden π∗ for (G1, G2) ∼ P.

4. Previous Results

• A natural estimator (MLE):

π̂ = argmaxC(π),

where C(π) is the total number of edges in the intersection graph
of G1 and G2 thorugh π.

• In the dense regime (p = n−o(1)), Wu, Xu and Yu showed that π̂
is indeed optimal, and the transition threshold for s is given by

s0 =

√
2 log n

np
(
log 1

p − 1 + p
) .

• More precisely, in this regime for any ε > 0,

– if s > (1 + ε)s0, then for some explicit τ it holds

P[C(π̂) < τ ] +Q[C(π̂) > τ ] = o(1) ,

and for any δ < 1 it holds

P[O(π̂, π∗) > δn] = 1− o(1) .

– If s < (1− ε)s0, then TV(P,Q) = o(1) (so detection is impossi-
ble), and for any estimator π̃ and δ > 0,

P[O(π̃, π∗) > δn] = o(1) .

• In the sparse regime, Wu, Xu and Yu also used π̂ to determine
the transition thereshold up to a multiplicative constant.

• Furthermore, they determined the threshold for the possibility of
exact recovery (when this can be done, it is also achieved by π̂).

5. Our Results

• We establish sharp informational thresholds for detection and
partial recovery in the sparse regime.

• Our novel estimator:

π̌ = argmaxD(π),

where D(π) stands for the maximal edge-vertex ratio over all
subgraphs of the intersection graph of G1 and G2 through π.

• The main technical imput for us is the following:

Theorem (Anatharam-Salez’16).
There is a function ϱ : [1,∞) → [1,∞) such that ∀c ≥ 1, for
G ∼ G(n.c/n), it holds that

max
∅≠H⊂G

|E(H)|
|V (H)|

→ ϱ(c) in probability as n → ∞.

• We obtain the sharp thereshold in terms of ϱ:

Theorem (D.-D.’22).
Assume p = n−α+o(1) for some constant α ∈ (0, 1), and let λ∗ =

ϱ−1(α−1). Then for any ε > 0,

– If nps2 ≥ λ∗ + ε, then for some τ it holds

P[D(π̌) < τ ] +Q[π̌ > τ ] = o(1) ,

and these exists some δ > 0 such that

P[O(π̌, π∗) > δn] = 1− o(1) .

– If nps2 ≤ λ∗ − ε, then TV(P,Q) = o(1), and for any estimator
π̃ and δ > 0,

P[O(π̃, π∗) > δn] = o(1) .
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