Characterizing the limiting Potts measure on locally T_d -like graphs: Local weak limits and strong phase coexistence

Hang Du (MIT), Yanxin Zhou (Stanford)

1. Potts measure on locally T_d -like graphs

• The q-state Potts measure on G with inverse temperature β and external field h is defined as a Gibbs measure on $[q]^{V(G)}$:

$$\mu_{\beta,h}^{G}(\sigma) = \frac{1}{\mathcal{Z}_{\beta,h}(G)} \exp\left(\beta \sum_{i \sim j} \mathbf{1}\{\sigma(i) = \sigma(j)\} + h \sum_{i} \mathbf{1}\{\sigma(i) = 1\}\right).$$

•We focus on the Potts measures on a sequence of graphs that **locally converges to the infinite** d**-regular tree** T_d in the *Benjamini-Schramm* sense (i.e. a typical neighborhood is a d-regular tree).

2.Background: Bethe prediction and BP fixed points

• For any sequence of locally T_d -like graphs $\{G_n\}$, the **Bethe prediction** suggests that the limiting free energy density is given by

$$\lim_{n\to\infty} \frac{1}{|V_n|} \log \mathcal{Z}_{\beta,h}(G_n) = \sup \Psi(\nu) ,$$

where $\Psi : \mathcal{P}([q]) \to \mathbb{R}$ is the **Bethe functional** and the supremum is taken over all probability measures on [q].

• [DMSS14] resolve the Bethe variational problem by showing $\sup \Psi(\nu) = \max\{\Psi(\nu_{\beta,h}^{\rm f}), \Psi(\nu_{\beta,h}^{\rm w})\}\ ,$

where $\nu_{\beta,h}^{\rm f}$ and $\nu_{\beta,h}^{\rm w}$ are the **belief-propagation fixed points** corresponding to the free and wired boundary conditions of Potts measure on T_d .

• The bethe prediction has been proved in [DMSS14, CvdH25].

3.Background: The Potts phase diagram

- The Bethe variational principle yields the **phase diagram** of Potts measures on T_d (and hence on locally T_d -like graphs).
- For the Ising case (q = 2), it turns out that for all $(\beta, h) \in \mathbb{R}^2_+$, $\nu_{\beta,h}^{\mathrm{f}} = \nu_{\beta,h}^{\mathrm{w}}$, and thus the analysis is relatively easier [DM10].
- However, the non-uniqueness regime for general Potts measures $(q \ge 3)$ is two-dimensional, due to the presence of two distinct phase transitions: **uniqueness-nonuniquenss, ordered-disordered**, making the analysis much more challenging.

Phase diagram of the Potts measures on \mathbb{T}_d when d=25, q=45.

- $\mathcal{R}_{=}$ is the uniqueness regime, $\nu_{\beta,h}^{\mathrm{f}} = \nu_{\beta,h}^{\mathrm{w}}$
- On \mathcal{R}_{\dagger} , $\Psi(\nu_{\beta,h}^{\dagger}) > \Psi(\nu_{\beta,h}^{\ddagger})$; On \mathcal{R}_{c} , $\Psi(\nu_{\beta,h}^{f}) = \Psi(\nu_{\beta,h}^{w})$.

Preprint of this work available at: arXiv:2505.24283.

4.Background: Potts measure local weak convergence

- Physicists conjecture that, in the large n limit, the local spin profile around a random vertex converges to a mixture of pure states induced by the dominant measures $\nu_{\beta,h}^{\dagger}$, $\dagger \in \{\mathrm{f},\mathrm{w}\}$. This is known as **local weak convergence** (of Gibbs measures).
- For $(\beta,h) \in \mathbb{R}^2 \setminus \mathcal{R}_c$, the dominant measure is unique, and hence $\mu_{\beta,h}^{G_n}$ converges to a single $\mu_{\beta,h}^{\dagger}$, $\dagger \in \{f,w\}$; whereas for $(\beta,h) \in \mathcal{R}_c$, there are two dominant measures $\nu_{\beta,h}^f$, $\nu_{\beta,h}^w$, and the local weak limit should be a mixture of $\mu_{\beta,h}^f$, $\mu_{\beta,h}^w$.
- The non-critical regime was fully resolved in [BDS25], assuming the Bethe prediction. In the critical regime \mathcal{R}_c , [HJP23, BDS25] made progress for the case q is *large* and d is *even*.

5. Results: local weak limit and phase coexistence

• We resolve the local weak limit conjecture in \mathcal{R}_c for **expander** graphs (certain well-connected graphs) for general $d, q \geq 3$.

Theorem 1. For any $d, q \geq 3$, any $(\beta, h) \in \mathcal{R}_c$ and any sequence of locally T_d -like expander graphs, any locally weakly convergent subsequence of $\{\mu_{\beta,h}^{G_n}\}$ converges **locally weakly in probability** to a mixture of $\mu_{\beta,h}^f$ and $\mu_{\beta,h}^w$.

• We further show that the mixture weight can be arbitrary, thereby confirming the **strong phase coexistence** prediction.

Theorem 2. For any $d, q \ge 3$, any $(\beta, h) \in \mathcal{R}_c$ and any $\alpha \in [0, 1]$, there exists a sequence of graphs G_n such that $G_n \xrightarrow{\text{loc}} \mathbb{T}_d$ and that

$$\mu_{\beta,h}^{G_n} \xrightarrow{\text{lwep}} \alpha \mu_{\beta,h}^{\text{f}} + (1-\alpha)\mu_{\beta,h}^{\text{w}}.$$

6.Proof ingredients

- *Basic strategy*: Following [BDS23], we utilize the **Edward-Sokal coupling** to transition to analyzing the **random cluster measure**, where we can exploit *monotonicity*.
- *Key ingredient*: A generalized local version of the **rank-2 ap-proximation** of random cluster partition function established and developed in [BBC23, CvdH25].
- *Main technical input*: A *large deviation type estimate* for the **cluster sizes** of the **FK-Ising percolation** on locally T_d-like expander graphs inspired from [KLS20].

References

[DM10] A. Dembo and A. Montanari, Ising model on locally tree-like graphs, *Ann. Appl. Prob.*, 2010.

[DMSS14] A. Dembo, A. Montanari, A. Sly and N, Sun, The replica symmetric solution for Potts mdels on *d*-regular graphs, *Commun. Math. Phys.*, 2014.

[KLS20] M. Krivelevich, E. Lubetzky and B. Sudakov, Asymptotics in percolation on high-girth expanders, *RS&A*, 2020.

[BBC23] F. Bencs, M. Borbényi and P. Csikvári, random cluster model on regular graphs, *Commun. Math. Phys.*, 2023.

[HJP23] T. Helmuth, M. Jenssen, W. Perkins, Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphs, *Ann. Inst. H. Poincaré Probab. Statist.*, 2023.

[BDS25] A. Basak, A. Dembo and A. Sly, Potts and random cluster measures on locally regular-tree-like graphs, *Commun. Math. Phys.*, 2025.

[CvdH25] V. H. Cao and R. van der Hofstad, random cluster model on random graphs, preprint, arXiv:2504.17636.