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Abstract

A series of works by Anttila, Ball, Perissinaki, and Klartag establish that for a high-
dimensional isotropic log-concave measure µ, its projection onto a random direction θ is,
with high probability, well-approximated by the standard Gaussian. In this note, we survey
the essential steps of the proof, with a focus on the high-level ideas and techniques.

1 Introduction

Let µ be a probability measure on Rn with density µ(x). We say that µ is log-concave if

µ(x)λµ(y)1−λ ≤ µ(λx+ (1− λ)y) , ∀x, y ∈ Rn , 0 < λ < 1 .

Classical examples of log-concave measures include the Gaussian measure and the uniform mea-
sure on a convex body. Moreover, by the Brunn–Minkowski inequality, any marginal of a log-
concave measure is also log-concave.

Log-concave measures play a central role in high-dimensional geometry, connecting the field
to various branches of mathematics such as functional analysis, probability theory, and theoretical
computer science. Consequently, the study of log-concave measures has become a fundamen-
tal topic in high-dimensional geometry and has attracted significant attention over the past few
decades.

An intriguing aspect of their connection to probability theory is the generalized central limit
theorem, which concerns how well a typical one-dimensional marginal of a high-dimensional log-
concave measure approximates the Gaussian distribution. Since the mean and variance of the
marginal may vary with the direction, it is natural to introduce the following normalizing condition,
known as isotropy. For a log-concave measure µ on Rn, we say that µ is isotropic if for a random
vector X = (X1, . . . , Xn) ∼ µ,

E[Xi] = 0 , E[XiXj ] = δij , ∀ 1 ≤ i, j ≤ n .

We refer to this as a normalizing condition because every non-degenerate measure µ can be trans-
formed into an isotropic measure via an affine transformation.

Regarding notational conventions, we always assume that the dimension n → ∞, and use the
standard asymptotic notations: fn = o(gn), fn = ω(gn), fn = O(gn), and fn = Ω(gn) mean,
respectively, that fn/gn → 0, fn/gn → ∞, lim sup fn/gn < ∞, and lim inf fn/gn > 0 as n →
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∞. Moreover, we use w.h.p. (short for “with high probability”) to denote that the corresponding
probability is 1− o(1) as n → ∞.

The main result that this note focuses on is that the marginal of a high-dimensional isotropic
log-concave measure along a random direction is w.h.p. close to the standard Gaussian distribution.

Theorem 1. Let µ be an isotropic log-concave measure on Rn. For any θ ∈ Sn−1, denote µθ for
the distribution of ⟨X, θ⟩ where X ∼ µ. Then as n → ∞, for θ uniformly sampled from Sn−1,
w.h.p. it holds

TV(µθ,N (0, 1)) = o(1) . (1)

We state Theorem 1 in its simplest form, but we remark that it has many generalizations. For
example, for a subspace E of Rn, denote by µE the projection of µ onto E. One may expect that for
a typical choice of E of dimension M not too large, w.h.p. µE is close to N (0, IM ). This is indeed
true, as shown in [Kla07], provided that M = o(log n/ log logn). Additionally, a strong (and
nearly sharp) quantitative version of (1), closely related to the KLS conjecture, has been obtained
only very recently in [FK22].

In this note, we survey the key steps in the proof of Theorem 1, following [ABP03] and [Kla07].
Both papers made significant contributions toward establishing Theorem 1. Roughly speaking,
[ABP03] reduces the central limit theorem problem to showing that the measure µ satisfies a “thin
shell” condition, meaning that the mass of µ concentrates in a small neighborhood of the sphere
in Rn with radius

√
n, while [Kla07] verifies that every isotropic log-concave measure satisfies

this thin shell condition. Both steps may appear surprising at first glance, and the goal of this note
is to explain the intuition behind them and the techniques involved in their proofs. Most of the
arguments in this note are borrowed from [ABP03] and [Kla07]. We also refer to [Fre21] for a
short and accessible proof of Theorem 1.

2 Reduction to the thin shell condition

Definition 2. We say µ satisfies the thin shell condition, if

µ
[
|X| = (1 + o(1))

√
N
]
= 1− o(1) . (2)

Let G ∼ N (0, 1) be a standard Gaussian variable. The main goal of this section is to show the
following proposition:

Proposition 3. Assume that µ is an isotropic log-concave measure on Rn that satisfies the thin
shell condition (2). then for any fixed interval I = [a, b] ⊂ R, as n → ∞, for a random direction
θ ∈ Sn−1, it holds w.h.p. that

µθ[I] = P[G ∈ I] + o(1) .

Proposition 3 provides a weak version of the central limit theorem under the assumption of the
thin shell condition. For simplicity, we state here only a non-quantitative version of Proposition 3,
although the corresponding probability estimates can in fact be made very strong. It is not hard
to believe that by applying a more quantitative version of Proposition 3 and combining it with
standard ε-net and continuity arguments, one can deduce the full central limit theorem as stated in
Theorem 1 under the thin shell condition. Therefore, in what follows, we only sketch the proof of
Proposition 3, and refer interested readers to [ABP03, Section 1] for the remaining details.
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In what follows, we denote by Pθ and Eθ the probability and expectation with respect to θ
sampled from the uniform measure on the sphere Sn−1. The importance of the thin shell condition
is illustrated by the following simple lemma.

Lemma 4. Fix I = [a, b] ⊂ R. As n → ∞, it holds that for any measure µ on Rn,

Eθ

[
µθ[I]

]
= (1 + o(1))Eµ

[
P[|X|/

√
n ·G ∈ I]

]
.

Therefore, if the thin shell condition is satisfied, then Eθ

[
µθ[I]

]
= P[G ∈ I] + o(1).

Proof. By definition we have

Eθ

[
µθ[I]

]
= Eθ

[
Eµ[1{⟨X, θ⟩ ∈ I]

]
= Eµ[Pθ[⟨X, θ⟩ ∈ I]] .

Notice that for θ uniformly sampled from Sn−1, ⟨X, θ⟩ has the same distribution as |X|θ1, where
θ1 is the first coordinate of θ ∈ Sn−1. It is a standard fact that as n → ∞, the distribution of θ1 is
o(1)-TV close to N (0, 1/

√
N).1 This concludes the proof.

In light of Lemma 4, Proposition 3 follows upon showing that µθ[I] tightly concentrates around
its expectation. For θ ∈ Sn−1 and t ∈ R, we let

Mθ(µ, t) = µ[X : ⟨X, θ⟩ ≤ t] . (3)

Since for I = [a, b], we have µθ[I] = Mθ(µ, b) − Mθ(µ, a), it suffices to prove the following
concentration property of Mθ(µ, t) over θ uniformly sampled from Sn−1.

Proposition 5. There exists a universal constant c > 0, such that for any t ∈ R and δ > 0,

Pθ

[∣∣∣Mθ(µ, t)− Eθ

[
Mθ(µ, t)

]∣∣∣ ≥ δ
]
≤ 2 exp(−cδ2n) . (4)

Proof. Fix t ∈ R. It suffices to verify that the function θ 7→ Mθ(µ, t) is O(1)-Lipschitz on Sn−1,
and then (4) follows from the standard concentration inequality on the sphere.

For θ1, θ2 ∈ Sn−1 such that |θ1 − θ2| ≤ 0.1, we have

|Mθ1(µ, t)−Mθ2(µ, t)| ≤ µ
[
{⟨X, θ1⟩ ≤ t}∆{⟨X, θ2⟩ ≤ t}

]
. (5)

Let q be the projection of µ on span(θ1, θ2), which we identify with R2. By (5) we have

|Mθ1(µ, t)−Mθ2(µ, t)| ≤
∫
□
q(x, y) dx dy ,

where the region of integration is the blue region depicted as in Figure 1 (β = arccos⟨θ1, θ2⟩).
Since that q is an isotropic log-concave measure on R2, we have that q(x, y) ≤ C exp(−c|x|−c|y|)
for some universal constants c, C > 0. Using this estimate, we readily conclude that

|Mθ1(µ, t)−Mθ2(µ, t)| ≤ 2Ce−|t||θ1 − θ2| ,

and thus θ 7→ Mθ(µ, t) is O(1)-Lipschitz, as desired. This completes the proof.
1One may think of sampling a uniform θ ∈ Sn−1 by first sampling a gaussian vector x ∼ N (0, In), and then let

θ = X/|X|. The result then follows from the law of large number that w.h.p. |X| = (1 + o(1))
√
n.
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Figure 1: The integrand region.

3 Verifying the thin shell condition

[Kla07] proves the surprising result that any isotropic log-concave measure satisfies the thin shell
condition, thereby establishing the central limit theorem based on the reduction in [ABP03]. In
this section, we sketch the high-level approach in [Kla07] for verifying the thin shell condition for
general isotropic log-concave measures.

We begin with a dimension reduction lemma enabled by a random projection. For integers
n ≥ k ≥ 1, let Gn,k denote the (n, k)-Grassmannian, and let σn,k denote the uniform distribution
(Haar measure) on Gn,k. For any E ∈ Gn,k, we write πE for the projection from Rn onto E.

Lemma 6 (Johnson-Lindenstrauss dimension reduction lemma). Let X be a vector in Rn. For
k = ω(1) and E ∼ σn,k, it holds w.h.p. that

|πEX| = (1 + o(1)) ·
√

k

n
|X|

Intuitively, by projecting onto a random subspace, the norm of X becomes almost evenly dis-
tributed across all directions. To ensure sufficient cancellation and achieve strong concentration, the
subspace dimension k must be large enough, which motivates the condition k = ω(1). The proof
is a straightforward application of concentration inequalities, and we refer to [JL84] for details.

In the remainder of this section, we always set k = (log n)1/2.2 In light of Lemma 6, to verify
that µ satisfies the thin shell condition, it suffices to show that w.h.p. over X ∼ µ and E ∼ Gn,k,
we have |πEX| = (1 + o(1))

√
k.

At first glance, such a reduction may seem useless, as k is still growing with n. However,
in what follows, we will define certain “good” subspaces onto which the projection of µ enjoys
desirable properties. We will argue that a random subspace E ∈ Gn,k is w.h.p. good. This allows
us to restrict our attention to a good subspace E and to study the projected measure µE . Notice
that µE possesses certain desirable properties by the definition of good subspaces, whereas a priori
there is no reason to assume that µ itself satisfies such properties.

We now proceed to define the good subspaces.

Definition 7. A subspace E ∈ Gn,k is said to be good, if the following holds

sup
θ∈E,|θ|=1

Mθ(µ, f)− inf
θ∈E,|θ|=1

Mθ(µ, f) ≤ n−0.1 , ∀t ∈ R . (6)

2Indeed, any choice satisfying 1 ≪ k ≪ logn would work equally well for the proof.
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Proposition 8. For E ∈ Gn,k, E is good with high probability.

Proof. We will not give the full proof of Proposition 8 but only provide a heuristic justification. In
section 2 we show that for any fixed t, the function θ 7→ Mθ(µ, t) tightly concentrates around its
expectation, denoted as M(t). Precisely, by applying the tail estimate (4), we see that

Pθ

[
|Mθ(µ, t)−M(t)| > 1

2n
−0.1

]
≤ exp(−Ω(n0.8)) . (7)

Moreover, similar as mentioned in Section 2, by continuity arguments we may extends (7) to

Pθ

[
|Mθ(µ, t)−M(t)| > 1

2n
−0.1 for some t ∈ R

]
≤ exp(−Ω(n0.8)) . (8)

We call a point θ ∈ Sn−1 to be good, if

|Mθ(µ, t)−M(t)| ≤ 1
2n

−0.1 , ∀ ∈ R .

Then (8) implies that at least an 1− exp(−Ω(n−0.8) portion of points θ ∈ Sn−1 are good.
On the other hand, we notice that for E ∈ Gn,k, if any θ ∈ E ∩ Sn−1 is good, then E itself is

good. When E is randomly sampled from σn,k, we may think of testing all points θ ∈ E∩Sd−1 for
being good as testing exp(O(k)) many random points on Sn−1 for being good. Since exp(O(k)) =
exp(O((log n)1/2) ≪ n0.1, in view of the union bound, we may expect that w.h.p. over E ∼ σn,k,
any θ ∈ E ∩ Sn−1 is good. This concludes a heuristic proof of Proposition 8, and we refer to
[Kla07, Lemma 3.2] for details.

In what follows we fix a good subspace E. For notational convenience, we identify E with Rk

and let ν = µE . Then, νE is an isotropic log-concave measure on Rk with the property that

sup
θ∈Sk−1

Mθ(ν, t)− inf
θ∈Sk−1

Mθ(ν, t) ≤ e−100k . (9)

Notice that condition (9) suggests a strong spherical symmetry of ν, which closely aligns with our
goal of showing that ν[|X| = (1 + o(1))

√
k] = 1− o(1).

Inspired by the nice connection between projections and Fourier transforms, a natural approach
is to first use (9) to show that ν̂—the Fourier transform of ν—is approximately spherically sym-
metric, and then apply the Fourier inversion formula to deduce that the same holds for ν, and thus
concludes the desired result. However, this approach cannot be directly applied, as one must care-
fully control the error terms. In particular, the errors become non-negligible when estimating ν̂(ξ)
for ξ with large modulus.

To handle this issue, we introduce a mollifier. Consider λ = ν∗g, where g(x) = (2π)−k/2e−|x|2/2

is the standard Gaussian density. Then, λ̂(ξ) = ν̂(ξ) · e−|ξ|2/2, and we can easily conclude that λ̂
is nearly spherical-symmetric. This yields the following proposition.

Proposition 9. Assume ν satisfies (9). Then for λ = ν ∗ g, it holds that

sup
θ∈Sn−1

λ(rθ)− inf
θ∈Sk−1

λ(rθ) ≤ e−20n , ∀r ≥ 0 . (10)

Proof. For ξ ∈ Rk, we write r = |ξ| ∈ [0,∞) and θ = r−1ξ ∈ Sk−1. By definition we have

ν̂(ξ) =

∫
Rk

e−ix·ξν(x) dx =

∫
R
e−irtνθ(t) d .
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Since d
dtMθ(ν, t) = νθ(t), using integrate by part formula we get (the boundary terms vanish)

ν̂(ξ) = ir

∫
R
e−irtMθ(ν, t) dt .

Therefore, for any ξ1, ξ2 ∈ Rk with |ξ1| = |ξ2| = r, denoting θi = r−1ξi, i = 1, 2, we have

|ν̂(θ1)− ν̂(θ2)| ≤ r
∣∣∣ ∫

R
e−irt(Mθ1

(
ν, t(−Mθ2(ν, t)

)
dt
∣∣∣ .

Since ν is an isotropic log-concave measure, it is an elementary fact that Mθ(ν, t) ≤ 2e−|t|/10 for
any t ∈ R and θ ∈ Sk−1 (see, e.g. [Kla07, Lemma 2.2]). Therefore, combining with (9) we have

|ν̂(ξ1)− ν̂(ξ2)| ≤ r ·
(
e−100k · 400k + 4

∫ ∞

200k
e−t/10 dt

)
≤ re−20k .

Since λ̂(ξ) = ν̂(ξ) · e−|ξ|2/2, we have for any ξ1, ξ2 ∈ Rk with |ξ1| = |ξ2| = r,

|λ(ξ1)− λ(ξ2)| ≤ re−r2/2 · e−20k .

Now, for any x1, x2 with |x1| = |x2| = r, let U ∈ O(k) such that Ux1 = x2, then x1 · ξ =
x2 · Uξ,∀ξ ∈ Rk. Using the Fourier inversion formula, we have

|λ(x1)− λ(x2)| = (2π)−k/2
∣∣∣ ∫

Rk

e−x1·ξ dξ −
∫
Rk

eix2·ξλ̂(ξ) dξ
∣∣∣

≤ (2π)−k/2
∣∣∣ ∫

Rk

eix1·ξ(λ̂(ξ)− λ̂(Uξ)) dξ
∣∣∣

≤ (2π)−k/2

∫
Rk

|ξ|e−|ξ|2/2 · e−20k dξ ,

which is at most e−20k, as desired. This concludes the proof.

Note that λ can be viewed as the distribution of X + Y , where X ∼ ν, Y ∼ N (0, Ik) are
independent. It is easy to see that w.h.p. it holds

|X + Y |2 = |X|2 + |Y |2 + 2⟨X,Y ⟩ = |X|2 + (1 + o(1))k + o
(√

k|X|
)
.

Therefore, in order to show that ν[|X| = (1 + o(1))
√
k] = 1 − o(1), it suffices to prove that

λ[|X| = (1 + o(1))
√
2k] = 1 − o(1). The following lemma further reduces our goal to merely

show that |X| is well-concentrated under λ.

Lemma 10. Let λ be an isotropic log-concave measure on Rk such that Eλ[|X|2] = 2k. If there
exists r0 such that λ[|X| = (1 + o(1))r0] = 1− o(1), then λ[|X| = (1 + o(1))

√
k] = 1− o(1).

Lemma 10 is totally not surprising. The tricky point is that for a general probability distribution,
the expectation may not reflect its typical behavior. However, it turns out that for log-concave
measures there is no such issue. We refer to [Kla07, Lemma 4.6] for the proof of Lemma 10.

We now proceed to verify that |X| concentrates tightly around some value under µ. While (10)
somewhat suggests that this is indeed the case, the proof is not so straightforward. We start with
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some intuitions that motivate the later proof. For simplicity, let us first assume that λ is actually
spherically symmetric, i.e. for some function f : R → R≥0, it holds that λ(x) = f(|x|),∀x ∈ Rn.
It is easy to check that f is also log-concave. We have for any I ⊂ R,

λ[|X| ∈ I] =

∫
I r

k−1f(r) dr∫∞
0 rk−1f(r) dr

.

We write rk−1f(r) = exp((k − 1) log r + log f(r)). Note that

d2

dr2
((k − 1) log r + log f(r)) = −k − 1

r2
+ (log f(r))′′ < 0 ,

the function r 7→ (k−1) log r+log f(r) is concave, and thus it has a unique maximizer r0 in [0,∞).
Moreover, since as k → ∞, the function decays rapidly near r0, in view of Laplace’s method (a.k.a.
the saddle point method), we expect that the main contribution of the integral of rk−1f(r) comes
from a small interval around r0. This heuristically concludes that ν[|X| = (1+o(1))r0] = 1−o(1).

In general, we fix a small constant ε > 0, and we wish to show that as k → ∞, there exists
r0 > 0 such that for Ar0,ε = {(1− ε)r0 ≤ |X| ≤ (1 + ε)r0}, it holds λ[Ar0,ε] = 1− o(1). By the
polar coordinate transform, we have

λ[Ar0,ε] =

∫
Sk−1

∫ (1+ε)r0

(1−ε)r0

rk−1λ(rθ) dr dθ ,

whereas
=

∫
Sk−1

∫ ∞

0
rk−1λ(rθ) dr dθ = 1 .

If we could pick r0 such that for each direction θ ∈ Sk−1, the most contribution of the integral∫ ∞

0
rk−1λ(rθ) dr (11)

comes from r ∈ ((1− ε)r0, (1 + ε)r0), then the desired result follows. However, as hinted earlier,
the main contribution of the integral (11) should come from a small interval around the maximizer
of r 7→ rk−1λ(rθ). Therefore, it remains to show that the maximizers do not different from each
other too much across different θ.

Precisely, we introduce the following definition.

Definition 11. For θ ∈ Sn−1, let rk(θ) be the (unique) maximizer of the function r 7→ rk−1λ(rθ).

The following lemma is a straightforward conclusion of the Laplace method, and we refer to
[Kla07, Lemma 4.5] for details.

Lemma 12. For any ε > 0 and θ ∈ Sn−1, it holds that∫ (1+ε/2)rk(θ)

(1−ε/2)rk(θ)
rk−1λ(rθ) dr ≥ (1− o(1))

∫ ∞

0
rk−1λ(rθ) dr .

Finally, we show that θ 7→ rk(θ) is almost constant on Sk−1.
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Lemma 13. For two log-concave C2 functions f, g : [0,∞) → [0,∞), let rk(f) (respectively,
rk(g)) be the maximizer of r 7→ rk−1f(r) (respectively r 7→ rk−1g(r)). Assume that |f(t)−g(t)| ≤
e−5k min{f(0), g(0)} for all t ∈ R, then it holds that (1− e−k)rk(f) ≤ rk(g) ≤ (1 + e−k)rk(f).
In particular, assuming (10), it holds that

sup
θ∈Sk−1

rk(θ) ≤ (1 + e−k) inf
θ∈Sk−1

rkθ . (12)

Proof. By symmetry we only need to show that θk(g) ≥ (1−e−k)θk(f). Without loss of generality,
we may assume θk(f) = 1. Denote f0 = log f, g0 = log g, then both f0 and g0 are concave. It is
straightforward to check that θk(g) is the unique solution to the equation tg′0(t) = −(k−1), and our
assumption implies f ′

0(1) = −(k− 1). Moreover, we have f ′
0(t) ≥ −(n− 1),∀t ∈ [0, 1], and thus

f(t) ≥ e−kf(0),∀t ∈ [0, 1]. Hence, the condition on f, g indicates that |f(t)/g(t) − 1| ≤ e−4k,
and thus

−2e−4k < log(1− e−4k) ≤ f0(t)− g0(t) ≤ log(1 + e−4k) ≤ e−4k , ∀t ∈ [0, 1] (13)

We claim that
g′0(t) ≥ f ′

0(t+ e−2k)− 4e−2k , ∀0 ≤ t ≤ 1− e−2k .

If this is not true, we have for some t0 ∈ [0, 1− e−2k], we have for any t ∈ [t0, t0 + e−2k],

g′0(t) ≤ g′0(t0) ≤ f ′
0(t0 + e−2k)− 4e−2k ≤ f ′

0(t)− 4e−2k ,

where in the first and the last inequality we used the fact that g0, f0 are concave. This implies that
for h0(t) = f0(t)− g0(t), h′0(t) ≥ 4e−2k for any t ∈ [t0, t0 + e−2k], and thus

h0(t0 + e−2n)− h0(t0) ≥ 4e−2k · e−2k = 4e−4k .

This contradicts (13) and thus the claim holds.
The claim implies that for any s ∈ [0, 1− e−n) with f ′

0(s) < 0,

sg′0(s) > (1− e−k)(f ′(1)− 4e−2k) = −(1− e−k)(k − 1 + 4e−2k) > −(n− 1) ,

and this means θk(g) ≥ 1− e−k, as desired.

Finally we complete the proof that |X| is concentrated under λ, thereby verifying the thin shell
condition. (12) implies that for any ε > 0, as k → ∞ there exists r0 such that (1 − ε)r0 ≤
(1 − ε/2)rk(θ) < (1 + ε/2)rk(θ) < (1 + ε)r0. Therefore, by the polar coordinate transform and
Lemma 12, for Ar0,ε = {(1− ε)r0 ≤ |X| ≤ (1 + ε)r0} it holds that

λ[Ar0,ε] ≥
∫
Sk−1

∫ (1+ε/2)rk(θ)

(1−ε/2)rk(θ
rk−1λ(rθ) dr dθ

≥ (1− o(1))

∫
Sk−1

∫ ∞

0
rk−1λ(rθ) dr dθ

= (1− o(1))

∫
Rk

λ(x) dx = 1− o(1) .

This proves that λ[|X| ∈ ((1 − ε)r0, (1 + ε)r0)] = 1 − o(1). Since this is true for any ε > 0, the
desired result follows.
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